Nothing Special   »   [go: up one dir, main page]

Skip to main content

Human Motion Recognition Based on Wi-Fi Imaging

  • Conference paper
  • First Online:
Collaborative Computing: Networking, Applications and Worksharing (CollaborateCom 2021)

Abstract

The current wireless sensing technology has some problems, such as low resolution caused by narrow signal bandwidth, poor environmental adaptability caused by multipath effect and so on. To solve the above problems, this paper provides a new perception idea, Wi-Fi imaging human actions, and then using image processing method for action recognition. In the Wi-Fi imaging part, according to the different spatial angles of different parts of the body trunk such as head, chest and legs relative to the receiving end, this paper processes the human body reflection signal received by the receiving end, obtains the signal strength corresponding to each azimuth signal in the space, and generates the human body heat map. In the stage of action recognition, firstly, the background interference is removed. According to the characteristics of imaging and action in this paper, a continuous action segmentation method is proposed. The image action features are obtained through intensive sampling. Finally, the SVM is optimized by genetic algorithm to improve the accuracy of action classification under different conditions. Through the analysis of experimental results, the method proposed in this paper can produce high-precision imaging of human body under practical application conditions. The recognition accuracy of different actions in the experiment is more than 90%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Forbrig, P., Paternó, F., Pejtersen, A.M.: Human-computer interaction. Encycl. Creativity Invention Innovation Entrepreneurship 19(2), 43–50 (2017)

    Google Scholar 

  2. Zesheng, Y.: Based on Kinect Research and Design of Smart Home System Based on Gesture Recognition. Liaoning University of Science and Technology, Liaoning (2017)

    Google Scholar 

  3. Yibo, L., Yulin, D.: Indoor abnormal behavior detection of the elderly living alone based on intelligent monitoring. Comput. Appl. Softw. 31(02), 188–190 (2014)

    Google Scholar 

  4. Kwapisz, J.R., Weiss, G.M., Moore, S.: Activity recognition using cell phone accelerometers. ACM SIGKDD Explor. Newsl. 12(2), 74–82 (2011)

    Article  Google Scholar 

  5. Lv, M., et al.: Bi-view semi-supervised learning based semantic human activity recognition using accelerometers. IEEE Trans. Mobile Comput. 17(9), 1991–2001 (2018)

    Article  Google Scholar 

  6. http://www.36kr.com/p/212759.html

  7. Jalal, A., Kamal, S., Kim, D.: Shape and motion features approach for activity tracking and recognition from kinect video camera. In: 2015 IEEE 29th International Conference on Advanced Information Networking and Applications Workshops, pp. 445–450. IEEE (2015)

    Google Scholar 

  8. Tang, S., Andres, B., Andriluka, M., Schiele, B.: Multi-person tracking by multicut and deep matching. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9914, pp. 100–111. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48881-3_8

    Chapter  Google Scholar 

  9. Yoshida, T., Taniguchi, Y.: Estimating the number of people using existing WiFi access point in indoor environment. In: Proceedings of the 6th European Conference of Computer Science (ECCS ‘15), pp. 46–53 (2015)

    Google Scholar 

  10. Weng, J., Weng, C., Yuan, J.: Spatio-temporal naive-Bayes nearest-neighbor (ST-NBNN) for skeleton-based action recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4171–4180 (2017)

    Google Scholar 

  11. Zou, Y., et al.: Wi-Fi radar: recognizing human behavior with commodity Wi-Fi. IEEE Commun. Mag. 55(10), 105–111 (2017)

    Article  Google Scholar 

  12. Wilson, J., Patwari, N.: Radio tomographic imaging with wireless networks. IEEE Trans. Mob. Comput. 9(5), 621–632 (2010)

    Article  Google Scholar 

  13. Sigg, S., Blanke, U., Tröster, G.: The telepathic phone: frictionless activity recognition from WiFi-RSSI. In: 2014 IEEE International Conference on Pervasive Computing and Communications (PerCom), pp. 148–155. IEEE (2014)

    Google Scholar 

  14. Han, J., et al.: GenePrint: generic and accurate physical-layer identification for UHF RFID tags. IEEE/ACM Trans. Netw. 24(2), 846–858 (2016)

    Article  Google Scholar 

  15. Xia, S., et al.: Indoor fingerprint positioning based on Wi-Fi: an overview. ISPRS Int. J. Geo Inf. 6(5), 135 (2017)

    Article  Google Scholar 

  16. Sameera, P., et al.: FallDeFi: ubiquitous fall detection using commodity Wi-Fi devices. IEEE Trans. Mob. Comput. 15(11), 2474–9567 (2019)

    Google Scholar 

  17. Shangguan, L., et al.: STPP: spatial-temporal phase profiling-based method for relative RFID tag localization. IEEE/ACM Trans. Netw. 25(1), 596–609 (2016)

    Article  Google Scholar 

  18. Kotaru, M., et al.: Spotfi: decimeter level localization using WiFi. In: Proceedings of the 2015 ACM Conference on Special Interest Group on Data Communication, pp. 269-282 (2015)

    Google Scholar 

  19. Yuw, Z., et al.: ZeroEffort cross-domain gesture recognition with Wi-Fi. In: Proceedings of the 17th Annual International Conference on Mobile Systems, Applications, and Services, 978-1-4503-6661-8. ACM (2020)

    Google Scholar 

  20. Stamnes, K., Stamnes, J.: Scattering of Electromagnetic Waves (2001)

    Google Scholar 

  21. Liu, Y., et al.: Channel estimation for OFDM. Commun. Surv. Tutorials IEEE 16(4), 1891–1908 (2014)

    Article  Google Scholar 

  22. Farhang-Boroujeny, B., Moradi, H.: OFDM inspired waveforms for 5G. IEEE Commun. Surv. Tutorials 18(4), 2474–2492 (2016)

    Article  Google Scholar 

  23. Schmidt, R.: Multiple emitter location and signal parameter estimation. IEEE Trans. Antennas Propag. 34(3), 276–280 (1986)

    Article  Google Scholar 

  24. Fugui, L., Mingzhen, L.: Structural optimization of depth CNN model based on convolution kernel decomposition and its application in small image recognition. J. Jinggangshan Univ. (Natural Sci. Edition) 39(02), 31–39 (2018)

    Google Scholar 

  25. Agarwal, M., et al.: Face recognition using principle component analysis, eigenface and neural network. In: 2010 International Conference on Signal Acquisition and Processing, pp. (310–314). IEEE (2010)

    Google Scholar 

  26. Roska, T., Pazienza, G.: Cellular Neural Network (2000)

    Google Scholar 

  27. Cortes, C., Vapnik, V.N.: Support vector networks. Mach. Learn. 20(3), 273–297 (1995)

    MATH  Google Scholar 

  28. Vapnik, V.N., Lerner, A.: Pattern recognition using generalized portrait method. Autom. Remote. Control. 24(6), 774–780 (1963)

    Google Scholar 

  29. Kimeldorf, G., Wahba, G.: Some results on Tchebycheffian spline functions. J. Math. Anal. Appl. 33(1), 82–95 (1971)

    Article  MathSciNet  Google Scholar 

  30. Huang, D., Nandakumar, R., Gollakota, S.: Feasibility and limits of Wi-Fi imaging. In: Proceedings of the 12th ACM Conference on Embedded Network Sensor Systems, pp. 266–279. ACM (2014)

    Google Scholar 

  31. Xiong, J., Jamieson, K.: ArrayTrack: a fine-grained indoor location system. In: Proceedings of the 10th USENIX Conference on Networked Systems Design and Implementation. USENIX Association (2013)

    Google Scholar 

  32. Adib, F., et al.: Capturing the human figure through a wall. ACM Trans. Graphics (TOG) 34(6), 219 (2015)

    Article  Google Scholar 

  33. Lei, C., et al.: Principle and architecture analysis of Wi-Fi technology. Telecommun. Sci. 31(9), 175–181 (2015)

    Google Scholar 

  34. Ting, W.: Research on Two-Dimensional DOA Estimation of Coherent Signals. Harbin Engineering University, Harbin (2010)

    Google Scholar 

  35. Kang, L., Youbao, X., Zhi, L.: Signal correlation and correction musicTwo dimensional DOA estimation algorithm. Comput. Appl. 32(02), 592–594 (2012)

    Google Scholar 

  36. Ma, Y., Zhou, G., Wang, S.: WiFi sensing with channel state information: a survey. ACM Comput. Surv. (CSUR) 52(3), 1–36 (2019)

    Article  Google Scholar 

  37. Jiang, Z., et al.: PicoScenes: enabling UWB sensing array on COTS Wi-Fi platform. In: Proceedings of the 2019 International Conference on Embedded Wireless Systems and Networks, pp. 264−266 (2019)

    Google Scholar 

  38. Mingxing, X.: Human feature extraction and measurement based on image. Zhejiang Univ. Technol (2018)

    Google Scholar 

  39. Hang, L.: Statistical Learning Methods. Tsinghua University Press, Beijing (2012)

    Google Scholar 

  40. Gao, R.X., Yan, R. Discrete wavelet transform. In: Proceeding of the International Conference on Imaging Science, pp. 193–197 (2016)

    Google Scholar 

  41. Kay, S.M.: Modem Spectral Estimation: Theory and Application. Prentice-Hall, Englewood, NJ (1988)

    Google Scholar 

Download references

Acknowledgment

This work was supported by NSFC 62072367, 61772413, 61802299, 62002284, and Natural Science Foundation of Shaanxi Province 2021JM-025.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lin, L. et al. (2021). Human Motion Recognition Based on Wi-Fi Imaging. In: Gao, H., Wang, X. (eds) Collaborative Computing: Networking, Applications and Worksharing. CollaborateCom 2021. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 406. Springer, Cham. https://doi.org/10.1007/978-3-030-92635-9_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-92635-9_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-92634-2

  • Online ISBN: 978-3-030-92635-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics