Abstract
We present experiments of sandpiles on grids (square, triangular, hexagonal) and Penrose tilings. The challenging part is to program such simulator; and our javacript code is available online, ready to play! We first present some identity elements of the sandpile group on these aperiodic structures, and then study the stabilization of the maximum stable configuration plus the identity, which lets a surprising circular shape appear. Roundness measurements reveal that the shapes are not approaching perfect circles, though they are close to be. We compare numerically this almost isotropic dynamical phenomenon on various tilings.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
The identity element of the sandpile group is unique.
- 2.
Note that in order to enforce aperiodicity in P2 and P3, matching constraints should be added on tile edges, for example via notches, but the finite tiling generation methods we employ do not require such considerations.
- 3.
Well, this is a bit disappointing, but we think that it is worth showing that it does not appear to be a fruitful research direction, or maybe a more insightful reader would encounter something out there....
- 4.
This also takes place on other tilings, outside the scope of the present work.
- 5.
They all remain stable with \(deg({v})-1\) grains until reaching m. Observe that any outer tile receiving some grain would topple, and that toppling any outer tile would result in toppling the whole maximum stable component it belongs to.
- 6.
The difficulty may be to find constructions from non Wang tiles, because Wang tiles would lead to square grids for the sandpile model to play on (as we remove tile decorations).
References
Baake M, Scholottmann M, Jarvis PD (1991) Quasiperiodic tilings with tenfold symmetry and equivalence with respect to local derivability. J Phys A: Math Gen 24(19):4637–4654. https://doi.org/10.1088/0305-4470/24/19/025
Bak P, Tang C, Wiesenfeld K (1987) Self-organized criticality: an explanation of the 1/f noise. Phys Rev Lett 59:381–384. https://doi.org/10.1103/PhysRevLett.59.381
Bak P, Tang C, Wiesenfeld K (1988) Self-organized criticality. Phys Rev A 38(1):364–374. https://doi.org/10.1103/PhysRevA.38.364
Ballier A, Jeandel E (2010) Computing (or not) Quasi-periodicity functions of tilings. In: Journées automates cellulaires, pp 54–64
Berger R (1966) The undecidability of the domino problem. Mem Am Math Soc 66. https://doi.org/10.1090/memo/0066
de Bruijn NG (1981) Algebraic theory of penrose’s non-periodic tilings of the plane. ii. Indag Math 84(1):53–66. https://doi.org/10.1016/1385-7258(81)90017-2
Cairns H (2018) Some halting problems for abelian sandpiles are undecidable in dimension three. SIAM J Discret Math 32(4):2636–2666. https://doi.org/10.1137/16M1091964
Cervelle J, Durand B (2004) Tilings: recursivity and regularity. Theor Comput Sci 310(1):469–477. https://doi.org/10.1016/S0304-3975(03)00242-1
Delorme M, Mazoyer J, Tougne L (1999) Discrete parabolas and circles on 2D cellular automata. Theor Comput Sci 218(2):347–417. https://doi.org/10.1016/S0304-3975(98)00330-2
Dhar D (1990) Self-organized critical state of sandpile automaton models. Phys Rev Lett 64:1613–1616. https://doi.org/10.1103/PhysRevLett.64.1613
Dhar D, Ruelle P, Sen S, Verma DN (1995) Algebraic aspects of abelian sandpile models. J Phys A 28(4):805–831. https://doi.org/10.1088/0305-4470/28/4/009
Durand B (1999) Tilings and quasiperiodicity. Theor Comput Sci 221(1):61–75. https://doi.org/10.1016/S0304-3975(99)00027-4
Durand-Lose JO (1998) Parallel transient time of one-dimensional sand pile. Theor Comput Sci 205(1–2):183–193. https://doi.org/10.1016/S0304-3975(97)00073-X
Fast VG, Efimov IR (1991) Stability of vortex rotation in an excitable cellular medium. Phys D: Nonlinear Phenom 49(1):75–81. https://doi.org/10.1016/0167-2789(91)90196-G
Fernique T (2007) Pavages, fractions continues et géométrie discrète. PhD thesis, Université Montpellier II
Formenti E, Goles E, Martin B (2012) Computational complexity of avalanches in the Kadanoff sandpile model. Fundam Inform 115(1):107–124. https://doi.org/10.3233/FI-2012-643
Formenti E, Masson B, Pisokas T (2007) Advances in symmetric sandpiles. Fundam Inform 76(1–2):91–112. https://doi.org/10.5555/2366416.2366423
Formenti E, Perrot K (2019) How hard is it to predict sandpiles on lattices? a survey. Fundam Inform 171:189–219. https://doi.org/10.3233/FI-2020-1879
Formenti E, Perrot K, Rémila E (2014) Computational complexity of the avalanche problem on one dimensional Kadanoff sandpiles. In: Proceedings of AUTOMATA’2014, LNCS, vol 8996, pp 21–30. https://doi.org/10.1007/978-3-319-18812-6_2
Formenti E, Perrot K, Rémila E (2018) Computational complexity of the avalanche problem for one dimensional decreasing sandpiles. J Cell Autom 13:215–228
Formenti E, Pham VT, Phan HD, Tran TH (2014) Fixed-point forms of the parallel symmetric sandpile model. Theor Comput Sci 533:1–14. https://doi.org/10.1016/j.tcs.2014.02.051
Gajardo A, Goles E (2006) Crossing information in two-dimensional sandpiles. Theor Comput Sci 369(1–3):463–469. https://doi.org/10.1016/j.tcs.2006.09.022
Goles E (1992) Sand pile automata. Ann de l’institut Henri Poincaré (A) Physique théorique 56(1):75–90
Goles E, Kiwi M (1993) Games on line graphs and sand piles. Theor Comput Sci 115(2):321–349. https://doi.org/10.1016/0304-3975(93)90122-A
Goles E, Latapy M, Magnien C, Morvan M, Phan HD (2004) Sandpile models and lattices: a comprehensive survey. Theor Comput Sci 322(2):383–407. https://doi.org/10.1016/j.tcs.2004.03.019
Goles E, Maldonado D, Montealegre P, Ollinger N (2017) On the computational complexity of the freezing non-strict majority automata. In: Proceedings of AUTOMATA’2017, pp 109–119. https://doi.org/10.1007/978-3-319-58631-1_9
Goles E, Margenstern M (1997) Universality of the chip-firing game. Theor Comput Sci 172(1–2):121–134. https://doi.org/10.1016/S0304-3975(95)00242-1
Goles E, Montealegre P (2014) Computational complexity of threshold automata networks under different updating schemes. Theor Comput Sci 559:3–19. https://doi.org/10.1016/j.tcs.2014.09.010
Goles E, Montealegre P (2016) A fast parallel algorithm for the robust prediction of the two-dimensional strict majority automaton. In: Proceedings of ACRI’2016, pp 166–175. https://doi.org/10.1007/978-3-319-44365-2_16
Goles E, Montealegre P, Perrot K, Theyssier G (2017) On the complexity of two-dimensional signed majority cellular automata. J Comput Syst Sci 91:1–32. https://doi.org/10.1016/j.jcss.2017.07.010
Goles E, Montealegre-Barba P, Todinca I (2013) The complexity of the bootstraping percolation and other problems. Theor Comput Sci 504:73–82. https://doi.org/10.1016/j.tcs.2012.08.001
Goles E, Morvan M, Phan HD (2002) Sandpiles and order structure of integer partitions. Discret Appl Math 117(1–3):51–64. https://doi.org/10.1016/S0166-218X(01)00178-0
Grünbaum B, Shephard GC (1986) Tilings and patterns. WH Freeman & Co
Kadanoff LP, Nagel SR, Wu L, Zhou S (1989) Scaling and universality in avalanches. Phys Rev A 39(12):6524–6537. https://doi.org/10.1103/PhysRevA.39.6524
Levine L, Pegden W, Smart CK (2016) Apollonian structure in the abelian sandpile. Geom Funct Anal 26:306–336. https://doi.org/10.1007/s00039-016-0358-7
Levine L, Pegden W, Smart CK (2017) The apollonian structure of integer superharmonic matrices. Ann Math 186(1):1–67. https://doi.org/10.4007/annals.2017.186.1.1
Levine L, Peres Y (2017) Laplacian growth, sandpiles, and scaling limits. Bull Am Math Soc 54(3):355–382. https://doi.org/10.1090/bull/1573
Marek M (2013) Grid anisotropy reduction for simulation of growth processes with cellular automaton. Phys D: Nonlinear Phenom 253:73–84. https://doi.org/10.1016/j.physd.2013.03.005
Markus M, Hess B (1990) Isotropic cellular automaton for modelling excitable media. Nature 347:56–58. https://doi.org/10.1038/347056a0
Miltersen PB (2005) The computational complexity of one-dimensional sandpiles. In: Proceedings of CiE’2005, pp 342–348. https://doi.org/10.1007/11494645_42
Moore C (1997) Majority-vote cellular automata, ising dynamics, and P-completeness. J Stat Phys 88(3):795–805. https://doi.org/10.1023/B:JOSS.0000015172.31951.7b
Moore C, Nilsson M (1999) The computational complexity of sandpiles. J Stat Phys 96:205–224. https://doi.org/10.1023/A:1004524500416
Nguyen VH, Perrot K (2018) Any shape can ultimately cross information on two-dimensional abelian sandpile models. In: Proceedings of AUTOMATA’2018, LNCS, vol 10875, pp 127–142. https://doi.org/10.1007/978-3-319-92675-9_10
Pegden W, Smart CK (2013) Convergence of the abelian sandpile. Duke Math J 162(4):627–642. https://doi.org/10.1215/00127094-2079677
Pegden W, Smart CK (2020) Stability of patterns in the abelian sandpile. Ann Henri Poincaré 21:1383–1399. https://doi.org/10.1007/s00023-020-00898-1
Penrose R (1974) The role of aesthetics in pure and applied mathematical research. Bull Inst Math Its Appl 10(2):266–271
Penrose R (1979) Pentaplexity: a class of non-periodic tilings of the plane. Math Intell 2:32–37. https://doi.org/10.1007/BF03024384
Perrot K (2013) Les piles de sable Kadanoff. PhD thesis, École normale supérieure de Lyon
Perrot K, Phan HD, Pham VT (2011) On the set of fixed points of the parallel symmetric sand pile model. In: Proceedings AUTOMATA’2011, DMTCS. Open Publishing Association, pp 17–28
Phan, H.D.: Structures ordonnées et dynamiques de piles de sable. Ph.D. thesis, Université Paris 7 (1999)
Phan HD (2008) Two sided sand piles model and unimodal sequences. ITA 42(3):631–646. https://doi.org/10.1051/ita:2008019
Robinson RM (1971) Undecidability and nonperiodicity for tilings of the plane. Inven Math 12:177–209. https://doi.org/10.1007/BF01418780
Roka Z (1994) Automates cellulaires sur graphes de cayley. PhD thesis, École Normale Supérieure de Lyon
Schepers HE, Markus M (1992) Two types of performance of an isotropic cellular automaton: stationary (Turing) patterns and spiral waves. Phys A: Stat Mech Its Appl 188(1):337–343. https://doi.org/10.1016/0378-4371(92)90277-W
Schönfisch B (1997) Anisotropy in cellular automata. Biosystems 41(1):29–41. https://doi.org/10.1016/S0303-2647(96)01664-4
Sirakoulis GC, Karafyllidis I, Thanailakis A (2005) A cellular automaton for the propagation of circular fronts and its applications. Eng Appl Artif Intell 18(6):731–744. https://doi.org/10.1016/j.engappai.2004.12.008
Wang H (1961) Proving theorems by pattern recognition —II. Bell Syst Tech J 40:1–41. https://doi.org/10.1002/j.1538-7305.1961.tb03975.x
Weimar JR (1997) Cellular automata for reaction-diffusion systems. Parallel Comput 23(11):1699–1715. https://doi.org/10.1016/S0167-8191(97)00081-1
Weimar JR, Tyson JJ, Watson LT (1992) Diffusion and wave propagation in cellular automaton models of excitable media. Phys D: Nonlinear Phenom 55(3):309–327. https://doi.org/10.1016/0167-2789(92)90062-R
Acknowledgements
The authors are thankful to Valentin Darrigo for his contributions to JS-Sandpile, to Victor Poupet for stressing that the apparent isotropy of the \({(m+e)}^{\circ }\) process is surprising at the occasion of a talk given by KP during AUTOMATA’2014 in Himeji, to Thomas Fernique for sharing his expertise (and code!) regarding the cut and project method, and to Christophe Papazian for useful comments on quasi-periodicity functions. The work of JF was conducted while a Master student at Aix-Marseille Université, doing an internship at the LIS laboratory (UMR 7020), both in Marseille, France. The work of KP was funded mainly by his salary as a French State agent and therefore by French taxpayers’ taxes, affiliated to Aix-Marseille University, University de Toulon, CNRS, LIS, UMR 7020, Marseille, France and University Côte d’Azur, CNRS, I3S, UMR 7271, Sophia Antipolis, France. Secondary financial support came from ANR-18-CE40-0002 FANs project, ECOS-Sud C16E01 project, and STIC AmSud CoDANet 19-STIC-03 (Campus France 43478PD) project.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Fersula, J., Noûs, C., Perrot, K. (2022). Sandpile Toppling on Penrose Tilings: Identity and Isotropic Dynamics. In: Adamatzky, A. (eds) Automata and Complexity. Emergence, Complexity and Computation, vol 42. Springer, Cham. https://doi.org/10.1007/978-3-030-92551-2_10
Download citation
DOI: https://doi.org/10.1007/978-3-030-92551-2_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-92550-5
Online ISBN: 978-3-030-92551-2
eBook Packages: EngineeringEngineering (R0)