Nothing Special   »   [go: up one dir, main page]

Skip to main content

Investigating Depression Semantics on Reddit

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2021)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1517))

Included in the following conference series:

  • 2028 Accesses

Abstract

Major depression is a challenging issue affecting individuals and those of the people around them. This paper investigates the Reddit comments for the automated identification of comments being indicative of depressive behaviour. We measure the socio-psycho-linguistic attributes as useful indicators and their importance for characterising the depression content. We tested content-level classifiers on Reddit data. The proposed BERT and BiLSTM with attention model outperform baseline machine learning (ML) and deep learning (DL) models and achieve a weighted F1-score of 0.81 and 0.84 respectively. Our results reveal that while semi-supervised BERT underperform a few ML models, it still gives non-zero classification and high class-wise precision for non-depressed class.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alías-Ferri, M., et al.: Cocaine and depressive disorders: when standard clinical diagnosis is insufficient. Adicciones 33(3), 1321 (2020)

    Article  Google Scholar 

  2. Berryman, C., Ferguson, C.J., Negy, C.: Social media use and mental health among young adults. Psychiatr. Q. 89(2), 307–314 (2018)

    Article  Google Scholar 

  3. Cacheda, F., Fernandez, D., Novoa, F.J., Carneiro, V.: Early detection of depression: social network analysis and random forest techniques. J. Med. Internet Res. 21(6), e12554 (2019)

    Article  Google Scholar 

  4. Clark, L.A., Cuthbert, B., Lewis-Fernández, R., Narrow, W.E., Reed, G.M.: Three approaches to understanding and classifying mental disorder: Icd-11, dsm-5, and the national institute of mental health’s research domain criteria (rdoc). Psychol. Sci. Public Interest 18(2), 72–145 (2017)

    Article  Google Scholar 

  5. De Choudhury, M., Counts, S., Horvitz, E.: Social media as a measurement tool of depression in populations. In: 5th ACM WebSci, pp. 47–56 (2013)

    Google Scholar 

  6. Dillon, A., Timulak, L., Greenberg, L.S.: Transforming core emotional pain in a course of emotion-focused therapy for depression: a case study. Psychother. Res. 28(3), 406–422 (2018)

    Article  Google Scholar 

  7. Islam, M.R., Kabir, M.A., Ahmed, A., Kamal, A.R.M., Wang, H., Ulhaq, A.: Depression detection from social network data using machine learning techniques. Health Inf. Sci. Syst. 6(1), 1–12 (2018). https://doi.org/10.1007/s13755-018-0046-0

    Article  Google Scholar 

  8. Jamil, Z., Inkpen, D., Buddhitha, P., White, K.: Monitoring tweets for depression to detect at-risk users. In: Fourth Workshop on CLPsych@ACL, pp. 32–40 (2017)

    Google Scholar 

  9. Krauss, S., Orth, U., Robins, R.W.: Family environment and self-esteem development: a longitudinal study from age 10 to 16. J. Pers. Soc. Psychol. 119(2), 457 (2020)

    Article  Google Scholar 

  10. Loula, R., Monteiro, L.: An individual-based model for predicting the prevalence of depression. Ecol. Complex. 38, 168–172 (2019)

    Article  Google Scholar 

  11. Nguyen, T., Phung, D., Dao, B., Venkatesh, S., Berk, M.: Affective and content analysis of online depression communities. IEEE Transactions on Affective Computing 5(3), 217–226 (2014)

    Article  Google Scholar 

  12. Orabi, A.H., Buddhitha, P., Orabi, M.H., Inkpen, D.: Deep learning for depression detection of twitter users. In: Proceedings of the Fifth Workshop on Computational Linguistics and Clinical Psychology: From Keyboard to Clinic, pp. 88–97 (2018)

    Google Scholar 

  13. Orth, U., Robins, R.W.: Development of self-esteem across the lifespan. Handbook of Personality Development, p. 328 (2018)

    Google Scholar 

  14. Reece, A.G., Reagan, A.J., Lix, K.L., Dodds, P.S., Danforth, C.M., Langer, E.J.: Forecasting the onset and course of mental illness with twitter data. Sci. Rep. 7(1), 1–11 (2017)

    Article  Google Scholar 

  15. Shetty, N.P., Muniyal, B., Anand, A., Kumar, S., Prabhu, S.: Predicting depression using deep learning and ensemble algorithms on raw twitter data. Int. J. Electr. Comput. Eng. 10, 2088–8708 (2020)

    Google Scholar 

  16. Tsugawa, S., Kikuchi, Y., Kishino, F., Nakajima, K., Itoh, Y., Ohsaki, H.: Recognizing depression from twitter activity. In: Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, pp. 3187–3196 (2015)

    Google Scholar 

  17. Vivek, D., Balasubramanie, P.: An ensemble learning model to predict mental depression disorder using tweets. J. Med. Imag. Health Inform. 10(1), 143–151 (2020)

    Article  Google Scholar 

  18. Yang, L., Jiang, D., Xia, X., Pei, E., Oveneke, M.C., Sahli, H.: Multimodal measurement of depression using deep learning models. In: Proceedings of the 7th Annual Workshop on Audio/Visual Emotion Challenge, pp. 53–59 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swati Agarwal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Agarwal, S., M, K., Singh, P., Shah, J., Sanjeev, N. (2021). Investigating Depression Semantics on Reddit. In: Mantoro, T., Lee, M., Ayu, M.A., Wong, K.W., Hidayanto, A.N. (eds) Neural Information Processing. ICONIP 2021. Communications in Computer and Information Science, vol 1517. Springer, Cham. https://doi.org/10.1007/978-3-030-92310-5_75

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-92310-5_75

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-92309-9

  • Online ISBN: 978-3-030-92310-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics