Nothing Special   »   [go: up one dir, main page]

Skip to main content

Solving the N-Queens and Golomb Ruler Problems Using DQN and an Approximation of the Convergence

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2021)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1517))

Included in the following conference series:

  • 1985 Accesses

Abstract

We build on the Deep Q-Learning Network (DQN) to solve the N-Queens problem to propose a solution to the Golomb Ruler problem, a popular example of a one dimensional constraint satisfaction problem. A comparison of the DQN approach with standard solution approaches to solve constraint satisfaction problems, such as backtracking and branch-and-bound, demonstrates the efficacy of the DQN approach, with significant computational savings as the order of the problem increases. The convergence behavior of the DQN model has been approximated using Locally Weighted Regression and Cybenko Approximation, demonstrating an improvement in the performance of the DQN with episodes, regardless of the order of the problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Babcock, W.C.: Intermodulation interference in radio systems frequency of occurrence and control by channel selection. Bell Syst J. 32(1), 63–73 (1953)

    Article  Google Scholar 

  2. Bansal, S., Singh, A.K., Gupta, N.: Optimal golomb ruler sequences generation for optical WDM systems: a novel parallel hybrid multi-objective bat algorithm. J. Inst. Eng. India Ser. B 98(1), 43–64 (2017)

    Google Scholar 

  3. Cybenko, G.: Approximation by superpositions of a sigmoidal function. Math. Control Signal. Syst. 2(4), 303–314 (1989)

    Article  MathSciNet  Google Scholar 

  4. Drakakis, K.: A review of the available construction methods for Golomb rulers. Adv. Math. Commun. 3(3), 235 (2009)

    Article  MathSciNet  Google Scholar 

  5. Englert, P.: Locally weighted learning. In: Seminar Class on Autonomous Learning Systems (2012)

    Google Scholar 

  6. Kumar, V.: Algorithms for constraint-satisfaction problems: a survey. AI Mag. 13(1), 32–32 (1992)

    Google Scholar 

  7. Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature 518(7540), 529 (2015)

    Article  Google Scholar 

  8. Papavassiliou, V.A., Russell, S.: Convergence of reinforcement learning with general function approximators. In: IJCAI, pp. 748–757 (1999)

    Google Scholar 

  9. Polash, M.A., Newton, M.H., Sattar, A.: Constraint-based search for optimal Golomb rulers. J. Heur. 23(6), 501–532 (2017)

    Google Scholar 

  10. Potapov, A., Ali, M.: Convergence of reinforcement learning algorithms and acceleration of learning. Phys. Rev. E 67(2), 026706 (2003)

    Google Scholar 

  11. Prudhvi Raj, P., Shah, P., Suresh, P.: Faster convergence to N-queens problem using reinforcement learning. In: Saha, S., Nagaraj, N., Tripathi, S. (eds.) MMLA 2019. CCIS, vol. 1290, pp. 66–77. Springer, Singapore (2020). https://doi.org/10.1007/978-981-33-6463-9_6

    Chapter  Google Scholar 

  12. Rivin, I., Zabih, R.: A dynamic programming solution to the N-Queens problem. Inf. Proces. Lett. 41(5), 253–256 (1992)

    Article  MathSciNet  Google Scholar 

  13. Robinson, J.p., Bernstein, A.: A class of binary recurrent codes with limited error propagation. IEEE Trans. Inf. Theory 13(1), 106–113 (1967)

    Google Scholar 

  14. Shearer, J.B.: Some new optimum golomb rulers. IEEE Transactions on Information Theory 36(1), 183–184 (1990)

    Article  Google Scholar 

  15. Watkins, C.J.C.H., Dayan, P.: Q-learning. Mach. Learn. 8(3), 279–292 (1992). https://doi.org/10.1007/BF00992698, https://doi.org/10.1007/BF00992698

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gowri Srinivasa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Prudhvi Raj, P., Saha, S., Srinivasa, G. (2021). Solving the N-Queens and Golomb Ruler Problems Using DQN and an Approximation of the Convergence. In: Mantoro, T., Lee, M., Ayu, M.A., Wong, K.W., Hidayanto, A.N. (eds) Neural Information Processing. ICONIP 2021. Communications in Computer and Information Science, vol 1517. Springer, Cham. https://doi.org/10.1007/978-3-030-92310-5_63

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-92310-5_63

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-92309-9

  • Online ISBN: 978-3-030-92310-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics