Nothing Special   »   [go: up one dir, main page]

Skip to main content

OADA: An Online Data Augmentation Method for Raw Histopathology Images

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2021)

Abstract

Deep learning-based automatic medical diagnosis is intensively studied in recent years. Abundant clinical raw records can be utilized, but we demonstrate that mixed and unknown magnification scales and staining conditions of raw histopathology images greatly hinder many successful deep models in this task. To address this problem, this paper proposes an Online Adaptive Data Augmentation method (OADA). In each training epoch, OADA adaptively selects base images and determines the personalized augmentation size of each image based on the current training status. The chosen images are augmented to update the training set. Extensive experiments show that OADA-empowered deep models obtain significant improvement compared to their bare versions, and OADA outperforms a suite of data augmentation baselines and state-of-the-art competitors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Coudray, N., Moreira, A.L., Sakellaropoulos, T., Feny, D., Tsirigos, A.: Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning. Nat. Med. 24, 1559–1567 (2018)

    Article  Google Scholar 

  2. Hashimoto, N., et al.: Multi-scale domain-adversarial multiple-instance CNN for cancer subtype classification with unannotated histopathological images. In: CVPR, pp. 3851–3860. IEEE (2020)

    Google Scholar 

  3. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778. IEEE (2016)

    Google Scholar 

  4. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: CVPR, pp. 4700–4708 (2017)

    Google Scholar 

  5. Inoue, H.: Data augmentation by pairing samples for images classification. arXiv preprint arXiv:1801.02929 (2018)

  6. Li, S., Chen, Y., Peng, Y., Bai, L.: Learning more robust features with adversarial training. arXiv preprint arXiv:1804.07757 (2018)

  7. Mounsaveng, S., Laradji, I.H., Ayed, I.B., Vázquez, D., Pedersoli, M.: Learning data augmentation with online bilevel optimization for image classification. In: WACV, pp. 1690–1699. IEEE (2021)

    Google Scholar 

  8. Shorten, C., Khoshgoftaar, T.M.: A survey on image data augmentation for deep learning. J. Big Data 6(1), 1–48 (2019)

    Article  Google Scholar 

  9. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: Bengio, Y., LeCun, Y. (eds.) ICLR (2015)

    Google Scholar 

  10. Spanhol, F.A., Oliveira, L.S., Petitjean, C., Heutte, L.: A dataset for breast cancer histopathological image classification. IEEE Trans. Biomed. Eng. 63(7), 1455–1462 (2016)

    Article  Google Scholar 

  11. Tang, Z., Gao, Y., Karlinsky, L., Sattigeri, P., Feris, R., Metaxas, D.: OnlineAugment: online data augmentation with less domain knowledge. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12352, pp. 313–329. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58571-6_19

    Chapter  Google Scholar 

  12. Taylor, L., Nitschke, G.: Improving deep learning using generic data augmentation. arXiv preprint arXiv:1708.06020 (2017)

  13. Wang, D., Khosla, A., Gargeya, R., Irshad, H., Beck, A.H.: Deep learning for identifying metastatic breast cancer. arXiv preprint arXiv:1606.05718 (2016)

  14. Wei, J.W., Tafe, L.J., Linnik, Y.A., Vaickus, L.J., Tomita, N., Hassanpour, S.: Pathologist-level classification of histologic patterns on resected lung adenocarcinoma slides with deep neural networks. Sci. Rep. 9(1), 1–8 (2019)

    Article  Google Scholar 

  15. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: ICCV, pp. 2223–2232 (2017)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the National Key Research and Development Program of China (2016YFB1000101), the National Natural Science Foundation of China (No. 61379052), the Science Foundation of Ministry of Education of China (No. 2018A02002), and the Natural Science Foundation for Distinguished Young Scholars of Hunan Province (No. 14JJ1026).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yijie Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wu, Z., Wang, Y., Mi, H., Xu, H., Zhang, W., Feng, L. (2021). OADA: An Online Data Augmentation Method for Raw Histopathology Images. In: Mantoro, T., Lee, M., Ayu, M.A., Wong, K.W., Hidayanto, A.N. (eds) Neural Information Processing. ICONIP 2021. Communications in Computer and Information Science, vol 1517. Springer, Cham. https://doi.org/10.1007/978-3-030-92310-5_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-92310-5_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-92309-9

  • Online ISBN: 978-3-030-92310-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics