Abstract
Evaluating the quality of images generated by generative adversarial networks (GANs) is still an open problem. Metrics such as Inception Score(IS) and Fréchet Inception Distance (FID) are limited in evaluating a single image, making trouble for researchers’ results presentation and practical application. In this context, an end-to-end image quality assessment (IQA) neural network shows excellent promise for a single generated image quality evaluation. However, generated image datasets with quality labels are too rare to train an efficient model. To handle this problem, this paper proposes a semi-supervised learning strategy to evaluate the quality of a single generated image. Firstly, a conditional GAN (CGAN) is employed to produce large numbers of generated-image samples, while the input conditions are regarded as the quality label. Secondly, these samples are fed into an image quality regression neural network to train a raw quality assessment model. Finally, a small number of labeled samples are used to fine-tune the model. In the experiments, this paper utilizes FID to prove our method’s efficiency indirectly. The value of FID decreased by 3.32 on average after we removed 40% of low-quality images. It shows that our method can not only reasonably evaluate the result of the overall generated image but also accurately evaluate the single generated image.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Barratt, S.T., Sharma, R.: A note on the inception score. CoRR abs/1801.01973 (2018). http://arxiv.org/abs/1801.01973
Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)
Goodfellow, I.J., et al.: Generative adversarial networks. arXiv preprint arXiv:1406.2661 (2014)
Gu, S., Bao, J., Chen, D., Wen, F.: GIQA: generated image quality assessment. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12356, pp. 369–385. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58621-8_22
Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, Long Beach, CA, USA, 4–9 December 2017, pp. 6626–6637 (2017)
Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017)
Lin, K., Wang, G.: Hallucinated-IQA: no-reference image quality assessment via adversarial learning. In: 2018 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, 18–22 June 2018, pp. 732–741. IEEE Computer Society (2018)
Liu, X., van de Weijer, J., Bagdanov, A.D.: RankIQA: learning from rankings for no-reference image quality assessment. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, 22–29 October 2017, pp. 1040–1049. IEEE Computer Society (2017)
Mirza, M., Osindero, S.: Conditional generative adversarial nets. CoRR 1411.1784 (2014). http://arxiv.org/abs/1411.1784
Mittal, A., Moorthy, A.K., Bovik, A.C.: No-reference image quality assessment in the spatial domain. IEEE Trans. Image Process. 21(12), 4695–4708 (2012)
Pathak, D., Krahenbuhl, P., Donahue, J., Darrell, T., Efros, A.A.: Context encoders: feature learning by inpainting. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2536–2544 (2016)
Reed, S.E., Akata, Z., Yan, X., Logeswaran, L., Schiele, B., Lee, H.: Generative adversarial text to image synthesis. In: Balcan, M., Weinberger, K.Q. (eds.) Proceedings of the 33nd International Conference on Machine Learning, ICML 2016. JMLR Workshop and Conference Proceedings, vol. 48, pp. 1060–1069. JMLR.org (2016)
Saad, M.A., Bovik, A.C., Charrier, C.: Blind image quality assessment: a natural scene statistics approach in the DCT domain. IEEE Trans. Image Process. 21(8), 3339–3352 (2012)
Salimans, T., Goodfellow, I.J., Zaremba, W., Cheung, V., Radford, A., Chen, X.: Improved techniques for training GANs. In: Advances in Neural Information Processing Systems 29: Annual Conference on Neural Information Processing Systems 2016, Barcelona, Spain, 5–10 December 2016, pp. 2226–2234 (2016)
Su, S., et al.: Blindly assess image quality in the wild guided by a self-adaptive hyper network. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2020, Seattle, WA, USA, 13–19 June 2020, pp. 3664–3673. IEEE (2020)
Wah, C., Branson, S., Welinder, P., Perona, P., Belongie, S.: The Caltech-UCSD Birds-200-2011 dataset (2011)
Xu, T., et al.: AttnGAN: fine-grained text to image generation with attentional generative adversarial networks. In: 2018 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, 18–22 June 2018, pp. 1316–1324. IEEE Computer Society (2018)
Zhang, H., et al.: StackGAN++: realistic image synthesis with stacked generative adversarial networks. IEEE Trans. Pattern Anal. Mach. Intell. 41(8), 1947–1962 (2019)
Zhang, X., Yu, W., Jiang, N., Zhang, Y., Zhang, Z.: SPS: a subjective perception score for text-to-image synthesis. In: 2021 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1–5. IEEE (2021)
Zhang, X., Zhang, Y., Zhang, Z., Yu, W., Jiang, N., He, G.: Deep feature compatibility for generated images quality assessment. In: Yang, H., Pasupa, K., Leung, A.C.-S., Kwok, J.T., Chan, J.H., King, I. (eds.) ICONIP 2020. CCIS, vol. 1332, pp. 353–360. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-63820-7_40
Zhang, Y., Zhang, X., Zhang, Z., Yu, W., Jiang, N., He, G.: No-reference quality assessment based on spatial statistic for generated images. In: Yang, H., Pasupa, K., Leung, A.C.-S., Kwok, J.T., Chan, J.H., King, I. (eds.) ICONIP 2020. CCIS, vol. 1332, pp. 497–506. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-63820-7_57
Zhu, H., Li, L., Wu, J., Dong, W., Shi, G.: MetaIQA: deep meta-learning for no-reference image quality assessment. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2020, Seattle, WA, USA, 13–19 June 2020, pp. 14131–14140. IEEE (2020)
Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017)
Zhu, M., Pan, P., Chen, W., Yang, Y.: DM-GAN: dynamic memory generative adversarial networks for text-to-image synthesis. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, 16–20 June 2019, pp. 5802–5810. Computer Vision Foundation/IEEE (2019)
Acknowledgements
This research is supported by Sichuan Science and Technology Program (No. 2020YFS0307, No. 2020YFG0430, No. 2019YFS0146), Mianyang Science and Technology Program (2020YFZJ016).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Zhang, X. et al. (2021). Semi-supervised Learning with Conditional GANs for Blind Generated Image Quality Assessment. In: Mantoro, T., Lee, M., Ayu, M.A., Wong, K.W., Hidayanto, A.N. (eds) Neural Information Processing. ICONIP 2021. Lecture Notes in Computer Science(), vol 13110. Springer, Cham. https://doi.org/10.1007/978-3-030-92238-2_40
Download citation
DOI: https://doi.org/10.1007/978-3-030-92238-2_40
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-92237-5
Online ISBN: 978-3-030-92238-2
eBook Packages: Computer ScienceComputer Science (R0)