Nothing Special   »   [go: up one dir, main page]

Skip to main content

Classification Models for Medical Data with Interpretative Rules

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 13108))

Included in the following conference series:

  • 2953 Accesses

Abstract

The raging of COVID-19 has been going on for a long time. Thus, it is essential to find a more accurate classification model for recognizing positive cases. In this paper, we use a variety of classification models to recognize the positive cases of SARS. We conduct evaluation with two types of SARS datasets, numerical and categorical types. For the sake of more clear interpretability, we also generate explanatory rules for the models. Our prediction models and rule generation models both get effective results on these two kinds of datasets. All explanatory rules achieve an accuracy of more than 70%, which indicates that the classification model can have strong inherent explanatory ability. We also make a brief analysis of the characteristics of different rule generation models. We hope to provide new possibilities for the interpretability of the classification models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Pedersen, S.F., Ho, Y.C.: SARS-CoV-2: a storm is raging. J. Clin. Invest. 130(5), 2202–2205 (2020)

    Article  Google Scholar 

  2. Doshi-Velez, F., Kim, B.: Towards a rigorous science of interpretable machine learning. arXiv: 1702.08608 (2017)

  3. Rudin, C.: Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nat. Mach. Intell. 1, 206–215 (2019)

    Article  Google Scholar 

  4. Viana dos Santos Santana, Í., et al.: Classification Models for COVID-19 test prioritization in Brazil: machine learning approach. J. Med. Internet Res. 23, e27293 (2021)

    Google Scholar 

  5. Mendis, B.S., Gedeon, T.D., Koczy, L.T.: Investigation of aggregation in fuzzy signatures. In: 3rd International Conference on Computational Intelligence, Robotics and Autonomous Systems (2005)

    Google Scholar 

  6. Zadeh, L.A.: Fuzzy sets. In: Fuzzy Sets, Fuzzy Logic, and Fuzzy Systems: Selected Papers by Lotfi A Zadeh, pp. 394–432 (1996)

    Google Scholar 

  7. Novák, V.: Fuzzy natural logic: towards mathematical logic of human reasoning. In: Seising, R., Trillas, E., Kacprzyk, J. (eds.) Towards the Future of Fuzzy Logic. SFSC, vol. 325, pp. 137–165. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18750-1_8

    Chapter  Google Scholar 

  8. Chen, T., Guestrin, C.: XGBoost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016)

    Google Scholar 

  9. Dorogush, A.V., Ershov, V., Gulin, A. CatBoost: gradient boosting with categorical features support. arXiv:1810.11363 (2018)

  10. Dietterich, T.G.: Ensemble learning. In: The Handbook of Brain Theory and Neural Networks, vol. 2, pp. 110–125 (2002)

    Google Scholar 

  11. Schaffer, C.: Overfitting avoidance as bias. Mach. Learn. 10(2), 153–178 (1993)

    Google Scholar 

  12. Laurent, H., Rivest, R.L.: Constructing optimal binary decision trees is NP-complete. Inf. Process. Lett. 5(1), 15–17 (1976)

    Article  MathSciNet  Google Scholar 

  13. Gautier, R., Jaffre, G., Ndiaye, B.: scikit-learn-contrib/skope-rules (2020). https://github.com/scikit-learn-contrib/skope-rules

  14. Bora, D.J., Gupta, D., Kumar, A.: A comparative study between fuzzy clustering algorithm and hard clustering algorithm. arXiv preprint arXiv:1404.6059 (2014)

  15. Bezdek, J.C., Ehrlich, R., Full, W.: FCM: the fuzzy c-means clustering algorithm. Comput. Geosci. 10(2–3), 191–203 (1984)

    Article  Google Scholar 

  16. Gedeon, T.D., Turner, H.S.: Explaining student grades predicted by a neural network. In: International Joint Conference on Neural Networks (1993)

    Google Scholar 

  17. Harry, S.T., Tamás, D.G.: Extracting Meaning from Neural Networks (2020). http://users.cecs.anu.edu.au/~Tom.Gedeon/pdfs/Extracting%20Meaning%20from%20Neural%20Networks.pdf

  18. Friedman, J.H., Popescu, B.E.: Predictive learning via rule ensembles. Ann. Appl. Stat. 2(3), 916–954 (2008)

    Article  MathSciNet  Google Scholar 

  19. Gautier, R., Jaffre, G., Ndiaye, B.: Interpretability with diversified-by-design rules; Skope-rules, a python package (2020). http://2018.ds3-datascience-polytechnique.fr/wp-content/uploads/2018/06/DS3-309.pdf

  20. Simpson, P.K.: Fuzzy min-max neural networks-part 1: classification. IEEE Trans. Neural Netw. 3(5), 776–786 (1992)

    Article  Google Scholar 

  21. Fisher, R.A.: The use of multiple measurements in taxonomic problems. Ann. Eugen. 7(2), 179–188 (1936)

    Article  Google Scholar 

  22. Abe, S., Lan, M.S.: A method for fuzzy rules extraction directly from numerical data and its application to pattern classification. IEEE Trans. Fuzzy Syst. 3(1), 18–28 (1995)

    Article  Google Scholar 

  23. Lekhtman, A.: Data Science in Medicine - Precision & Recall or Specificity & Sensitivity? (2019). https://towardsdatascience.com/should-i-look-at-precision-recall-or-specificity-sensitivity-3946158aace1

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinyue Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xu, X., Ding, X., Qin, Z., Liu, Y. (2021). Classification Models for Medical Data with Interpretative Rules. In: Mantoro, T., Lee, M., Ayu, M.A., Wong, K.W., Hidayanto, A.N. (eds) Neural Information Processing. ICONIP 2021. Lecture Notes in Computer Science(), vol 13108. Springer, Cham. https://doi.org/10.1007/978-3-030-92185-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-92185-9_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-92184-2

  • Online ISBN: 978-3-030-92185-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics