Abstract
Standard hybrid encryption schemes based on the KEM-DEM framework are hard to implement efficiently in a distributed manner whilst maintaining the CCA security property of the scheme. This is because the DEM needs to be decrypted under the key encapsulated by the KEM, before the whole ciphertext is declared valid. In this paper we present a new variant of the KEM-DEM framework, closely related to Tag-KEMs, which sidesteps this issue. We then present a post-quantum KEM for this framework based on Learning-with-Rounding, which is designed specifically to have fast distributed decryption. Our combined construction of a hybrid encryption scheme with Learning-with-Rounding based KEM, called Gladius, is closely related to the NIST Round 3 candidate called Saber. Finally, we give a prototype distributed implementation that achieves a decapsulation time of 4.99 s for three parties.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
A scheme is defined to be rigid if decryption of a ‘ciphertext’, which is not the output of an encryption operation, always returns \(\perp \).
- 2.
A scheme is said to be PCA (plain-check attack) secure if it is secure in the presence of an oracle which allows the adversary to check whether a given ciphertext encrypts a given plaintext.
- 3.
Although there is an issue of having comparable security for these parameters, due to our reliance on LWE in the key generation phase, see Table 1 for more details.
- 4.
One time meaning that the attacker does not get access to an encryption oracle.
- 5.
- 6.
The result in [12] is only given for normal and Ring LWE/LWR, but extending the result to the module variants is immediate.
References
Abe, M., Gennaro, R., Kurosawa, K.: Tag-KEM/DEM: a new framework for hybrid encryption. J. Cryptol. 21(1), 97–130 (2008)
Albrecht, M.R., et al.: Estimate all the LWE, NTRU schemes! In: Catalano, D., De Prisco, R. (eds.) SCN 2018. LNCS, vol. 11035, pp. 351–367. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98113-0_19
Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Post-quantum key exchange - a new hope. In: Holz, T., Savage, S. (eds.) USENIX Security 2016, pp. 327–343. USENIX Association (2016)
Alwen, J., Krenn, S., Pietrzak, K., Wichs, D.: Learning with rounding, revisited - new reduction, properties and applications. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 57–74. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4_4
Aly, A., Ashur, T., Ben-Sasson, E., Dhooghe, S., Szepieniec, A.: Design of symmetric-key primitives for advanced cryptographic protocols. Cryptology ePrint Archive, Report 2019/426 (2019). https://eprint.iacr.org/2019/426
Aly, A., et al.: SCALE and MAMBA v1.9: documentation (2020). https://homes.esat.kuleuven.be/~nsmart/SCALE/Documentation.pdf
Arita, S., Tsurudome, K.: Construction of threshold public-key encryptions through tag-based encryptions. In: Abdalla, M., Pointcheval, D., Fouque, P.-A., Vergnaud, D. (eds.) ACNS 2009. LNCS, vol. 5536, pp. 186–200. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01957-9_12
Bendlin, R., Damgård, I.: Threshold decryption and zero-knowledge proofs for lattice-based cryptosystems. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 201–218. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11799-2_13
Bendlin, R., Damgård, I., Orlandi, C., Zakarias, S.: Semi-homomorphic encryption and multiparty computation. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 169–188. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20465-4_11
Bernstein, D.J., Chuengsatiansup, C., Lange, T., van Vredendaal, C.: NTRU Prime. Technical report, National Institute of Standards and Technology (2019). https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
Bernstein, D.J., Persichetti, E.: Towards KEM unification. Cryptology ePrint Archive, Report 2018/526 (2018). https://eprint.iacr.org/2018/526
Bogdanov, A., Guo, S., Masny, D., Richelson, S., Rosen, A.: On the hardness of learning with rounding over small modulus. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016, Part I. LNCS, vol. 9562, pp. 209–224. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49096-9_9
Boneh, D., Gennaro, R., Goldfeder, S., Jain, A., Kim, S., Rasmussen, P.M.R., Sahai, A.: Threshold cryptosystems from threshold fully homomorphic encryption. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part I. LNCS, vol. 10991, pp. 565–596. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96884-1_19
Bonte, C., Smart, N.P., Tanguy, T.: Thresholdizing HashEdDSA: MPC to the Rescue. Cryptology ePrint Archive, Report 2020/214 (2019). https://eprint.iacr.org/2020/214
Cozzo, D., Smart, N.P.: Sharing the LUOV: threshold post-quantum signatures. In: Albrecht, M. (ed.) IMACC 2019. LNCS, vol. 11929, pp. 128–153. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-35199-1_7
Cozzo, D., Smart, N.P.: Sashimi: cutting up CSI-fish secret keys to produce an actively secure distributed signing protocol. In: Ding, J., Tillich, J.-P. (eds.) PQCrypto 2020. LNCS, vol. 12100, pp. 169–186. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-44223-1_10
Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure against adaptive chosen ciphertext attack. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 13–25. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0055717
Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption schemes secure against adaptive chosen ciphertext attack. SIAM J. Comput. 33(1), 167–226 (2003)
Damgård, I., Fitzi, M., Kiltz, E., Nielsen, J.B., Toft, T.: Unconditionally secure constant-rounds multi-party computation for equality, comparison, bits and exponentiation. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 285–304. Springer, Heidelberg (2006). https://doi.org/10.1007/11681878_15
Damgård, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_38
D’Anvers, J.-P., Karmakar, A., Sinha Roy, S., Vercauteren, F.: Saber: module-LWR based key exchange, CPA-secure encryption and CCA-secure KEM. In: Joux, A., Nitaj, A., Rachidi, T. (eds.) AFRICACRYPT 2018. LNCS, vol. 10831, pp. 282–305. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89339-6_16
D’Anvers, J.P., Karmakar, A., Roy, S.S., Vercauteren, F.: SABER. Technical report, National Institute of Standards and Technology (2019). https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
De Feo, L., Meyer, M.: Threshold schemes from isogeny assumptions. In: Kiayias, A., Kohlweiss, M., Wallden, P., Zikas, V. (eds.) PKC 2020, Part II. LNCS, vol. 12111, pp. 187–212. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45388-6_7
Dent, A.W.: A designer’s guide to KEMs. In: Paterson, K.G. (ed.) Cryptography and Coding 2003. LNCS, vol. 2898, pp. 133–151. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-40974-8_12
Dolev, D., Dwork, C., Naor, M.: Non-malleable cryptography (extended abstract). In: 23rd ACM STOC, pp. 542–552. ACM Press, May 1991
Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryption schemes. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 537–554. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1_34
Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryption schemes. J. Cryptol. 26(1), 80–101 (2013)
Garcia-Morchon, O., et al.: Round5. Technical report, National Institute of Standards and Technology (2019). https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
Grassi, L., Kales, D., Khovratovich, D., Roy, A., Rechberger, C., Schofnegger, M.: Starkad and Poseidon: New hash functions for zero knowledge proof systems. Cryptology ePrint Archive, Report 2019/458 (2019). https://eprint.iacr.org/2019/458
Hamburg, M.: Three Bears. Technical report, National Institute of Standards and Technology (2019). https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
Hofheinz, D., Hövelmanns, K., Kiltz, E.: A modular analysis of the Fujisaki-Okamoto transformation. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017, Part I. LNCS, vol. 10677, pp. 341–371. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70500-2_12
Ishihara, T., Aono, H., Hongo, S., Shikata, J.: Construction of threshold (hybrid) encryption in the random oracle model: how to construct secure threshold tag-KEM from weakly secure threshold KEM. In: Pieprzyk, J., Ghodosi, H., Dawson, E. (eds.) ACISP 2007. LNCS, vol. 4586, pp. 259–273. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73458-1_20
Keller, M., Orsini, E., Rotaru, D., Scholl, P., Soria-Vazquez, E., Vivek, S.: Faster secure multi-party computation of AES and DES using lookup tables. In: Gollmann, D., Miyaji, A., Kikuchi, H. (eds.) ACNS 2017. LNCS, vol. 10355, pp. 229–249. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61204-1_12
Keller, M., Orsini, E., Scholl, P.: MASCOT: faster malicious arithmetic secure computation with oblivious transfer. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S. (eds.) ACM CCS 2016, pp. 830–842. ACM Press, October 2016
Kraitsberg, M., Lindell, Y., Osheter, V., Smart, N.P., Talibi Alaoui, Y.: Adding distributed decryption and key generation to a ring-LWE based CCA encryption scheme. In: Jang-Jaccard, J., Guo, F. (eds.) ACISP 2019. LNCS, vol. 11547, pp. 192–210. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21548-4_11
Libert, B., Yung, M.: Non-interactive CCA-secure threshold cryptosystems with adaptive security: new framework and constructions. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 75–93. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28914-9_5
Lim, C.H., Lee, P.J.: Another method for attaining security against adaptively chosen ciphertext attacks. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 420–434. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48329-2_36
Lu, X., et al.: LAC. Technical report, National Institute of Standards and Technology (2019). https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 700–718. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_41
Naehrig, M., et al.: FrodoKEM. Technical report National Institute of Standards and Technology (2019). https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen ciphertext attacks. In: 22nd ACM STOC, pp. 427–437. ACM Press, May 1990
Nishide, T., Ohta, K.: Multiparty computation for interval, equality, and comparison without bit-decomposition protocol. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 343–360. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71677-8_23
Okamoto, T., Pointcheval, D.: REACT: rapid enhanced-security asymmetric cryptosystem transform. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 159–174. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45353-9_13
Pinkas, B., Schneider, T., Smart, N.P., Williams, S.C.: Secure two-party computation is practical. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 250–267. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-7_15
Poppelmann, T., et al.: NewHope. Technical report, National Institute of Standards and Technology (2019). https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
Rotaru, D., Smart, N.P., Tanguy, T., Vercauteren, F., Wood, T.: Actively secure setup for SPDZ. Cryptology ePrint Archive, Report 2019/1300 (2019). https://eprint.iacr.org/2019/1300
Schwabe, P., et al.: CRYSTALS-KYBER. Technical report, National Institute of Standards and Technology (2019). https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
Shoup, V., Gennaro, R.: Securing threshold cryptosystems against chosen ciphertext attack. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 1–16. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054113
Shoup, V., Gennaro, R.: Securing threshold cryptosystems against chosen ciphertext attack. J. Cryptol. 15(2), 75–96 (2002)
Smart, N.P., Wood, T.: Error detection in monotone span programs with application to communication-efficient multi-party computation. In: Matsui, M. (ed.) CT-RSA 2019. LNCS, vol. 11405, pp. 210–229. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12612-4_11
Targhi, E.E., Unruh, D.: Post-quantum security of the Fujisaki-Okamoto and OAEP transforms. In: Hirt, M., Smith, A. (eds.) TCC 2016, Part II. LNCS, vol. 9986, pp. 192–216. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53644-5_8
Xie, X., Xue, R., Zhang, R.: Deterministic public key encryption and identity-based encryption from lattices in the auxiliary-input setting. In: Visconti, I., De Prisco, R. (eds.) SCN 2012. LNCS, vol. 7485, pp. 1–18. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32928-9_1
Zhandry, M.: How to record quantum queries, and applications to quantum indifferentiability. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part II. LNCS, vol. 11693, pp. 239–268. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26951-7_9
Zhang, Z., et al.: NTRUEncrypt. Technical report, National Institute of Standards and Technology (2019). https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
Acknowledgment
We would like to thank Alexandra Boldyreva for clarifying some issues with the PRIV definition of security for deterministic encryption, Frederik Vercauteren for clarifying some issues in relation to Learning-with-Rounding, Andrej Bogdanov for clarifying issues related to the theoretical reductions between LWE and LWR, and Ward Beullens on comments on an earlier draft. This work was supported in part by CyberSecurity Research Flanders with reference number VR20192203, by ERC Advanced Grant ERC-2015-AdG-IMPaCT, by the Defense Advanced Research Projects Agency (DARPA) and Space and Naval Warfare Systems Center, Pacific (SSC Pacific) under contract No. FA8750-19-C-0502, and by the FWO under an Odysseus project GOH9718N. Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the ERC, DARPA, the US Government or the FWO. The U.S. Government is authorized to reproduce and distribute reprints for governmental purposes notwithstanding any copyright annotation therein.
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 International Association for Cryptologic Research
About this paper
Cite this paper
Cong, K., Cozzo, D., Maram, V., Smart, N.P. (2021). Gladius: LWR Based Efficient Hybrid Public Key Encryption with Distributed Decryption. In: Tibouchi, M., Wang, H. (eds) Advances in Cryptology – ASIACRYPT 2021. ASIACRYPT 2021. Lecture Notes in Computer Science(), vol 13093. Springer, Cham. https://doi.org/10.1007/978-3-030-92068-5_5
Download citation
DOI: https://doi.org/10.1007/978-3-030-92068-5_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-92067-8
Online ISBN: 978-3-030-92068-5
eBook Packages: Computer ScienceComputer Science (R0)