Nothing Special   »   [go: up one dir, main page]

Skip to main content

Gladius: LWR Based Efficient Hybrid Public Key Encryption with Distributed Decryption

  • Conference paper
  • First Online:
Advances in Cryptology – ASIACRYPT 2021 (ASIACRYPT 2021)

Abstract

Standard hybrid encryption schemes based on the KEM-DEM framework are hard to implement efficiently in a distributed manner whilst maintaining the CCA security property of the scheme. This is because the DEM needs to be decrypted under the key encapsulated by the KEM, before the whole ciphertext is declared valid. In this paper we present a new variant of the KEM-DEM framework, closely related to Tag-KEMs, which sidesteps this issue. We then present a post-quantum KEM for this framework based on Learning-with-Rounding, which is designed specifically to have fast distributed decryption. Our combined construction of a hybrid encryption scheme with Learning-with-Rounding based KEM, called Gladius, is closely related to the NIST Round 3 candidate called Saber. Finally, we give a prototype distributed implementation that achieves a decapsulation time of 4.99 s for three parties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    A scheme is defined to be rigid if decryption of a ‘ciphertext’, which is not the output of an encryption operation, always returns \(\perp \).

  2. 2.

    A scheme is said to be PCA (plain-check attack) secure if it is secure in the presence of an oracle which allows the adversary to check whether a given ciphertext encrypts a given plaintext.

  3. 3.

    Although there is an issue of having comparable security for these parameters, due to our reliance on LWE in the key generation phase, see Table 1 for more details.

  4. 4.

    One time meaning that the attacker does not get access to an encryption oracle.

  5. 5.

    https://bitbucket.org/malb/lwe-estimator/src/master/.

  6. 6.

    The result in [12] is only given for normal and Ring LWE/LWR, but extending the result to the module variants is immediate.

References

  1. Abe, M., Gennaro, R., Kurosawa, K.: Tag-KEM/DEM: a new framework for hybrid encryption. J. Cryptol. 21(1), 97–130 (2008)

    Article  MathSciNet  Google Scholar 

  2. Albrecht, M.R., et al.: Estimate all the LWE, NTRU schemes! In: Catalano, D., De Prisco, R. (eds.) SCN 2018. LNCS, vol. 11035, pp. 351–367. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98113-0_19

    Chapter  Google Scholar 

  3. Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Post-quantum key exchange - a new hope. In: Holz, T., Savage, S. (eds.) USENIX Security 2016, pp. 327–343. USENIX Association (2016)

    Google Scholar 

  4. Alwen, J., Krenn, S., Pietrzak, K., Wichs, D.: Learning with rounding, revisited - new reduction, properties and applications. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 57–74. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4_4

    Chapter  Google Scholar 

  5. Aly, A., Ashur, T., Ben-Sasson, E., Dhooghe, S., Szepieniec, A.: Design of symmetric-key primitives for advanced cryptographic protocols. Cryptology ePrint Archive, Report 2019/426 (2019). https://eprint.iacr.org/2019/426

  6. Aly, A., et al.: SCALE and MAMBA v1.9: documentation (2020). https://homes.esat.kuleuven.be/~nsmart/SCALE/Documentation.pdf

  7. Arita, S., Tsurudome, K.: Construction of threshold public-key encryptions through tag-based encryptions. In: Abdalla, M., Pointcheval, D., Fouque, P.-A., Vergnaud, D. (eds.) ACNS 2009. LNCS, vol. 5536, pp. 186–200. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01957-9_12

    Chapter  Google Scholar 

  8. Bendlin, R., Damgård, I.: Threshold decryption and zero-knowledge proofs for lattice-based cryptosystems. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 201–218. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11799-2_13

    Chapter  Google Scholar 

  9. Bendlin, R., Damgård, I., Orlandi, C., Zakarias, S.: Semi-homomorphic encryption and multiparty computation. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 169–188. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20465-4_11

    Chapter  Google Scholar 

  10. Bernstein, D.J., Chuengsatiansup, C., Lange, T., van Vredendaal, C.: NTRU Prime. Technical report, National Institute of Standards and Technology (2019). https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions

  11. Bernstein, D.J., Persichetti, E.: Towards KEM unification. Cryptology ePrint Archive, Report 2018/526 (2018). https://eprint.iacr.org/2018/526

  12. Bogdanov, A., Guo, S., Masny, D., Richelson, S., Rosen, A.: On the hardness of learning with rounding over small modulus. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016, Part I. LNCS, vol. 9562, pp. 209–224. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49096-9_9

    Chapter  MATH  Google Scholar 

  13. Boneh, D., Gennaro, R., Goldfeder, S., Jain, A., Kim, S., Rasmussen, P.M.R., Sahai, A.: Threshold cryptosystems from threshold fully homomorphic encryption. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part I. LNCS, vol. 10991, pp. 565–596. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96884-1_19

    Chapter  Google Scholar 

  14. Bonte, C., Smart, N.P., Tanguy, T.: Thresholdizing HashEdDSA: MPC to the Rescue. Cryptology ePrint Archive, Report 2020/214 (2019). https://eprint.iacr.org/2020/214

  15. Cozzo, D., Smart, N.P.: Sharing the LUOV: threshold post-quantum signatures. In: Albrecht, M. (ed.) IMACC 2019. LNCS, vol. 11929, pp. 128–153. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-35199-1_7

    Chapter  Google Scholar 

  16. Cozzo, D., Smart, N.P.: Sashimi: cutting up CSI-fish secret keys to produce an actively secure distributed signing protocol. In: Ding, J., Tillich, J.-P. (eds.) PQCrypto 2020. LNCS, vol. 12100, pp. 169–186. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-44223-1_10

    Chapter  Google Scholar 

  17. Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure against adaptive chosen ciphertext attack. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 13–25. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0055717

    Chapter  Google Scholar 

  18. Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption schemes secure against adaptive chosen ciphertext attack. SIAM J. Comput. 33(1), 167–226 (2003)

    Article  MathSciNet  Google Scholar 

  19. Damgård, I., Fitzi, M., Kiltz, E., Nielsen, J.B., Toft, T.: Unconditionally secure constant-rounds multi-party computation for equality, comparison, bits and exponentiation. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 285–304. Springer, Heidelberg (2006). https://doi.org/10.1007/11681878_15

    Chapter  Google Scholar 

  20. Damgård, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_38

    Chapter  Google Scholar 

  21. D’Anvers, J.-P., Karmakar, A., Sinha Roy, S., Vercauteren, F.: Saber: module-LWR based key exchange, CPA-secure encryption and CCA-secure KEM. In: Joux, A., Nitaj, A., Rachidi, T. (eds.) AFRICACRYPT 2018. LNCS, vol. 10831, pp. 282–305. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89339-6_16

    Chapter  Google Scholar 

  22. D’Anvers, J.P., Karmakar, A., Roy, S.S., Vercauteren, F.: SABER. Technical report, National Institute of Standards and Technology (2019). https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions

  23. De Feo, L., Meyer, M.: Threshold schemes from isogeny assumptions. In: Kiayias, A., Kohlweiss, M., Wallden, P., Zikas, V. (eds.) PKC 2020, Part II. LNCS, vol. 12111, pp. 187–212. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45388-6_7

    Chapter  Google Scholar 

  24. Dent, A.W.: A designer’s guide to KEMs. In: Paterson, K.G. (ed.) Cryptography and Coding 2003. LNCS, vol. 2898, pp. 133–151. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-40974-8_12

    Chapter  Google Scholar 

  25. Dolev, D., Dwork, C., Naor, M.: Non-malleable cryptography (extended abstract). In: 23rd ACM STOC, pp. 542–552. ACM Press, May 1991

    Google Scholar 

  26. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryption schemes. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 537–554. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1_34

    Chapter  Google Scholar 

  27. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryption schemes. J. Cryptol. 26(1), 80–101 (2013)

    Article  MathSciNet  Google Scholar 

  28. Garcia-Morchon, O., et al.: Round5. Technical report, National Institute of Standards and Technology (2019). https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions

  29. Grassi, L., Kales, D., Khovratovich, D., Roy, A., Rechberger, C., Schofnegger, M.: Starkad and Poseidon: New hash functions for zero knowledge proof systems. Cryptology ePrint Archive, Report 2019/458 (2019). https://eprint.iacr.org/2019/458

  30. Hamburg, M.: Three Bears. Technical report, National Institute of Standards and Technology (2019). https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions

  31. Hofheinz, D., Hövelmanns, K., Kiltz, E.: A modular analysis of the Fujisaki-Okamoto transformation. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017, Part I. LNCS, vol. 10677, pp. 341–371. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70500-2_12

    Chapter  MATH  Google Scholar 

  32. Ishihara, T., Aono, H., Hongo, S., Shikata, J.: Construction of threshold (hybrid) encryption in the random oracle model: how to construct secure threshold tag-KEM from weakly secure threshold KEM. In: Pieprzyk, J., Ghodosi, H., Dawson, E. (eds.) ACISP 2007. LNCS, vol. 4586, pp. 259–273. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73458-1_20

    Chapter  Google Scholar 

  33. Keller, M., Orsini, E., Rotaru, D., Scholl, P., Soria-Vazquez, E., Vivek, S.: Faster secure multi-party computation of AES and DES using lookup tables. In: Gollmann, D., Miyaji, A., Kikuchi, H. (eds.) ACNS 2017. LNCS, vol. 10355, pp. 229–249. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61204-1_12

    Chapter  Google Scholar 

  34. Keller, M., Orsini, E., Scholl, P.: MASCOT: faster malicious arithmetic secure computation with oblivious transfer. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S. (eds.) ACM CCS 2016, pp. 830–842. ACM Press, October 2016

    Google Scholar 

  35. Kraitsberg, M., Lindell, Y., Osheter, V., Smart, N.P., Talibi Alaoui, Y.: Adding distributed decryption and key generation to a ring-LWE based CCA encryption scheme. In: Jang-Jaccard, J., Guo, F. (eds.) ACISP 2019. LNCS, vol. 11547, pp. 192–210. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21548-4_11

    Chapter  MATH  Google Scholar 

  36. Libert, B., Yung, M.: Non-interactive CCA-secure threshold cryptosystems with adaptive security: new framework and constructions. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 75–93. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28914-9_5

    Chapter  Google Scholar 

  37. Lim, C.H., Lee, P.J.: Another method for attaining security against adaptively chosen ciphertext attacks. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 420–434. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48329-2_36

    Chapter  Google Scholar 

  38. Lu, X., et al.: LAC. Technical report, National Institute of Standards and Technology (2019). https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions

  39. Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 700–718. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_41

    Chapter  Google Scholar 

  40. Naehrig, M., et al.: FrodoKEM. Technical report National Institute of Standards and Technology (2019). https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions

  41. Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen ciphertext attacks. In: 22nd ACM STOC, pp. 427–437. ACM Press, May 1990

    Google Scholar 

  42. Nishide, T., Ohta, K.: Multiparty computation for interval, equality, and comparison without bit-decomposition protocol. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 343–360. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71677-8_23

    Chapter  Google Scholar 

  43. Okamoto, T., Pointcheval, D.: REACT: rapid enhanced-security asymmetric cryptosystem transform. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 159–174. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45353-9_13

    Chapter  Google Scholar 

  44. Pinkas, B., Schneider, T., Smart, N.P., Williams, S.C.: Secure two-party computation is practical. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 250–267. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-7_15

    Chapter  Google Scholar 

  45. Poppelmann, T., et al.: NewHope. Technical report, National Institute of Standards and Technology (2019). https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions

  46. Rotaru, D., Smart, N.P., Tanguy, T., Vercauteren, F., Wood, T.: Actively secure setup for SPDZ. Cryptology ePrint Archive, Report 2019/1300 (2019). https://eprint.iacr.org/2019/1300

  47. Schwabe, P., et al.: CRYSTALS-KYBER. Technical report, National Institute of Standards and Technology (2019). https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions

  48. Shoup, V., Gennaro, R.: Securing threshold cryptosystems against chosen ciphertext attack. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 1–16. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054113

    Chapter  Google Scholar 

  49. Shoup, V., Gennaro, R.: Securing threshold cryptosystems against chosen ciphertext attack. J. Cryptol. 15(2), 75–96 (2002)

    Article  MathSciNet  Google Scholar 

  50. Smart, N.P., Wood, T.: Error detection in monotone span programs with application to communication-efficient multi-party computation. In: Matsui, M. (ed.) CT-RSA 2019. LNCS, vol. 11405, pp. 210–229. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12612-4_11

    Chapter  Google Scholar 

  51. Targhi, E.E., Unruh, D.: Post-quantum security of the Fujisaki-Okamoto and OAEP transforms. In: Hirt, M., Smith, A. (eds.) TCC 2016, Part II. LNCS, vol. 9986, pp. 192–216. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53644-5_8

    Chapter  MATH  Google Scholar 

  52. Xie, X., Xue, R., Zhang, R.: Deterministic public key encryption and identity-based encryption from lattices in the auxiliary-input setting. In: Visconti, I., De Prisco, R. (eds.) SCN 2012. LNCS, vol. 7485, pp. 1–18. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32928-9_1

    Chapter  Google Scholar 

  53. Zhandry, M.: How to record quantum queries, and applications to quantum indifferentiability. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part II. LNCS, vol. 11693, pp. 239–268. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26951-7_9

    Chapter  Google Scholar 

  54. Zhang, Z., et al.: NTRUEncrypt. Technical report, National Institute of Standards and Technology (2019). https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions

Download references

Acknowledgment

We would like to thank Alexandra Boldyreva for clarifying some issues with the PRIV definition of security for deterministic encryption, Frederik Vercauteren for clarifying some issues in relation to Learning-with-Rounding, Andrej Bogdanov for clarifying issues related to the theoretical reductions between LWE and LWR, and Ward Beullens on comments on an earlier draft. This work was supported in part by CyberSecurity Research Flanders with reference number VR20192203, by ERC Advanced Grant ERC-2015-AdG-IMPaCT, by the Defense Advanced Research Projects Agency (DARPA) and Space and Naval Warfare Systems Center, Pacific (SSC Pacific) under contract No. FA8750-19-C-0502, and by the FWO under an Odysseus project GOH9718N. Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the ERC, DARPA, the US Government or the FWO. The U.S. Government is authorized to reproduce and distribute reprints for governmental purposes notwithstanding any copyright annotation therein.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kelong Cong , Daniele Cozzo , Varun Maram or Nigel P. Smart .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 International Association for Cryptologic Research

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cong, K., Cozzo, D., Maram, V., Smart, N.P. (2021). Gladius: LWR Based Efficient Hybrid Public Key Encryption with Distributed Decryption. In: Tibouchi, M., Wang, H. (eds) Advances in Cryptology – ASIACRYPT 2021. ASIACRYPT 2021. Lecture Notes in Computer Science(), vol 13093. Springer, Cham. https://doi.org/10.1007/978-3-030-92068-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-92068-5_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-92067-8

  • Online ISBN: 978-3-030-92068-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics