Nothing Special   »   [go: up one dir, main page]

Skip to main content

ACHC: Associative Classifier Based on Hierarchical Clustering

  • Conference paper
  • First Online:
Intelligent Data Engineering and Automated Learning – IDEAL 2021 (IDEAL 2021)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 13113))

  • 1640 Accesses

Abstract

The size of collected data is increasing and the number of rules generated on those datasets is getting bigger. Producing compact and accurate models is being the most important task of data mining.

In this research work, we develop a new associative classifier – ACHC, that utilizes agglomerative hierarchical clustering as a post-processing step to reduce the number of rules and a new method is proposed in the rule-selection step to increase classification accuracy.

Experimental evaluations show that the ACHC method achieves significantly better results than classical rule learning algorithms in terms of rules on bigger datasets while maintaining classification accuracy on those datasets. More precisely, ACHC achieved the highest (43) result on the average number of rules and the third-highest (84.8%) result in terms of average classification accuracy among 10 classification algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: Bocca, J.B., Jarke, M., Zaniolo, C. (eds.) VLDB 1994 Proceedings of the 20th International Conference on Very Large Data Bases, pp. 487–499. Chile (1994)

    Google Scholar 

  2. Cohen, W.W.: Fast Effective rule induction. In: Prieditis, A., Russel, S.J. (eds.) ICML 1995 Proceedings of the Twelfth International Conference on Machine Learning, pp. 115–123. California (1995)

    Google Scholar 

  3. Dahbi, A., Mouhir, M., Balouki, Y., Gadi, T.: Classification of association rules based on K-means algorithm. In: Mohajir, M.E., Chahhou, M., Achhab, M.A., Mohajir, B.E. (eds.) 4th IEEE International Colloquium on Information Science and Technology, pp. 300–305. Tangier, Morocco (2016)

    Google Scholar 

  4. Dechang, P., Xiaolin, Q.: A new fuzzy clustering algorithm on association rules for knowledge management. Inf. Technol. J. 7(1), 119–124 (2008)

    Article  Google Scholar 

  5. Deng, H., Runger, G., Tuv, E., Bannister, W.: CBC: an associative classifier with a small number of rules. Decis. Support Syst. 50(1), 163–170 (2014)

    Article  Google Scholar 

  6. Dua, D., Graff, C.: UCI Machine Learning Repository. University of California, Irvine, CA (2019)

    Google Scholar 

  7. Frank, E., Witten, I.: Generating accurate rule sets without global optimization. In: Shavlik, J.W. (eds) Fifteenth International Conference on Machine Learning, pp. 144–151. USA (1998)

    Google Scholar 

  8. Gupta, K.G., Strehl, A., Ghosh, J.: Distance based clustering of association rules. In: Proceedings of Artificial Neural Networks in Engineering Conference, pp. 759–764. USA (1999)

    Google Scholar 

  9. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA data mining software: an update. SIGKDD Explor. 11(1), 10–18 (2009)

    Google Scholar 

  10. Hall, M., Frank, E.: Combining Naive Bayes and Decision Tables. In: Wilson, D.L, Chad, H. (eds.) Proceedings of Twenty-First International Florida Artificial Intelligence Research Society Conference, pp. 318–319, Florida, USA (2008)

    Google Scholar 

  11. Hühn, J., Hüllermeier, E.: FURIA: an algorithm for unordered fuzzy rule induction. Data Min. Knowl. Disc. 19(1), 293–319 (2019). https://doi.org/10.1007/s10618-009-0131-8

    Article  MathSciNet  Google Scholar 

  12. Hu, L.Y., Hu, Y.H., Tsai, C.F., Wang, J.S., Huang, M.W.: Building an associative classifier with multiple minimum supports. SpringerPlus 5, 528 (2016). https://doi.org/10.1186/s40064-016-2153-1

  13. Kaufman, L., Rousseeuw, P.J.: Finding Groups in Data: An Introduction to Cluster Analysis. Wiley, USA (1990).

    Google Scholar 

  14. Khairan, D.R.: New associative classification method based on rule pruning for classification of datasets. IEEE Access 7, 157783–157795 (2019)

    Article  Google Scholar 

  15. Kohavi, R.: The power of decision tables. In: Lavrač, N., Wrobel, S. (eds) 8th European Conference on Machine Learning, pp. 174–189. Crete, Greece (1995)

    Google Scholar 

  16. Kosters, W.A., Marchiori, E., Oerlemans, A.A.J.: Mining clusters with association rules. In: Hand, D.J., Kok, J.N., Berthold, M.R. (eds.) IDA 1999. LNCS, vol. 1642, pp. 39–50. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48412-4_4

    Chapter  Google Scholar 

  17. Lent, B., Swami, A., Widom, J.: Clustering association rules. In: Gray, A., Larson, P. (eds.) Proceedings of the Thirteenth International Conference on Data Engineering, pp. 220–231. England (1997)

    Google Scholar 

  18. Liu, B., Hsu, W., Ma, Y.: Integrating classification and association rule mining. In: Agrawal, R., Stolorz, P. (eds.) Proceedings of the 4th International Conference on Knowledge Discovery and Data Mining, pp. 80–86. New York, USA (1998)

    Google Scholar 

  19. Mattiev, J., Kavšek, B.: A compact and understandable associative classifier based on overall coverage.In: Procedia Computer Science, vol. 170, pp. 1161–1167. Warsaw, Poland (2020).

    Google Scholar 

  20. Mattiev, J., Kavšek, B.: Simple and accurate classification method based on class association rules performs well on well-known datasets. In: Nicosia, G., Pardalos, P., Umeton, R., Giuffrida, G., Sciacca, V. (eds.) LOD 2019. LNCS, vol. 11943, pp. 192–204. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-37599-7_17

    Chapter  Google Scholar 

  21. Mattiev, J., Kavšek, B.: CMAC: clustering class association rules to form a compact and meaningful associative classifier. In: Nicosia, G., et al. (eds.) LOD 2020. LNCS, vol. 12565, pp. 372–384. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64583-0_34

    Chapter  Google Scholar 

  22. Mattiev, J., Kavšek, B.: Distance-based clustering of class association rules to build a compact, accurate and descriptive classifier. Comput. Sci. Inf. Syst. 18(3), 791–811 (2021). https://doi.org/10.2298/CSIS200430037M

    Article  Google Scholar 

  23. Mattiev, J., Kavsek, B.: Coverage-based classification using association rule mining. Appl. Sci. 10, 7013 (2020). https://doi.org/10.3390/app10207013

    Article  Google Scholar 

  24. Ng, T.R., Han, J.: Efficient and effective clustering methods for spatial data mining. In: Bocca, J., B., Jarke, M., Zaniolo, C. (eds.) Proceedings of the 20th Conference on Very Large Data Bases (VLDB), pp. 144–155, Santiago, Chile (1994)

    Google Scholar 

  25. Phipps, A., Lawrence, J.H.: An overview of combinatorial data analysis. clustering and classification, pp. 5–63, World Scientific, New Jersey (1996)

    Google Scholar 

  26. Quinlan, J.: C4.5: programs for machine learning. Mach. Learn. 16(3), 235–240 (1993)

    Google Scholar 

  27. Richards, D.: Ripple down rules: a technique for acquiring knowledge. Decision-making support systems: achievements, trends and challenges for, pp. 207–226. IGI Global, USA (2002)

    Google Scholar 

  28. Theodoridis, S., Koutroumbas, K.: Hierarchical algorithms. Pattern Recogn. 4(13), 653–700 (2009)

    Google Scholar 

  29. Zait, M., Messatfa, H.: A comparative study of clustering methods. Futur. Gener. Comput. Syst. 13(2–3), 149–159 (1997)

    Article  Google Scholar 

  30. Zhang, T., Ramakrishnan, R., Livny, M.: BIRCH: an efficient data clustering method for very large databases. In: Widom, J. (ed) Proceedings of the 1996 ACM-SIGMOD International Conference on Management of Data, pp. 103–114. Montreal, Canada (1996)

    Google Scholar 

Download references

Acknowledgement

The authors gratefully acknowledge the European Commission for funding the InnoRenew CoE project (Grant Agreement #739574) under the Horizon2020 Widespread-Teaming programme and the Republic of Slovenia (Investment funding of the Republic of Slovenia and the European Union of the European Regional Development Fund). They also acknowledge the Slovenian Research Agency ARRS for funding the project J2-2504. Jamolbek Mattiev is also funded for his Ph.D. by the “El-Yurt-Umidi” foundation under the Cabinet of Ministers of the Republic of Uzbekistan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Branko Kavšek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mattiev, J., Kavšek, B. (2021). ACHC: Associative Classifier Based on Hierarchical Clustering. In: Yin, H., et al. Intelligent Data Engineering and Automated Learning – IDEAL 2021. IDEAL 2021. Lecture Notes in Computer Science(), vol 13113. Springer, Cham. https://doi.org/10.1007/978-3-030-91608-4_55

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-91608-4_55

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-91607-7

  • Online ISBN: 978-3-030-91608-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics