Abstract
Among the XAI (eXplainable Artificial Intelligence) techniques, local explanations are witnessing increasing interest due to the user need to trust specific black-box decisions. In this work we explore a novel local explanation approach appliable to any kind of classifier based on generating masking models. The idea underlying the method is to learn a transformation of the input leading to a novel instance able to confuse the black-box and simultaneously minimizing dissimilarity with the instance to explain. The transformed instance then highlights the parts of the input that need to be (de-)emphasized and acts as an explanation for the local decision. We clarify differences with existing local explanation methods and experiment our approach on different image classification scenarios, pointing out advantages and peculiarities of the proposal.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Altmann, A., Toloşi, L., Sander, O., Lengauer, T.: Permutation importance: a corrected feature importance measure. Bioinformatics 26(10), 1340–1347 (2010)
Dabkowski, P., Gal, Y.: Real time image saliency for black box classifiers (2017). arXiv preprint arXiv:1705.07857
Du, M., Liu, N., Song, Q., Hu, X.: Towards explanation of dnn-based prediction with guided feature inversion. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 1358–1367 (2018)
Du, M., Liu, N., Yang, F., Ji, S., Hu, X.: On attribution of recurrent neural network predictions via additive decomposition. In: The World Wide Web Conference, pp. 383–393 (2019)
LeCun, Y., Cortes, C., Burges, C.: Mnist handwritten digit database (2010)
Lundberg, S., Lee, S.I.: A unified approach to interpreting model predictions (2017). arXiv preprint arXiv:1705.07874
Montavon, G., Binder, A., Lapuschkin, S., Samek, W., Müller, K.R.: Layer-wise relevance propagation: an overview. In: Explainable AI: Interpreting, Explaining and Visualizing Deep Learning, pp. 193–209 (2019)
Qi, Z., Khorram, S., Li, F.: Visualizing deep networks by optimizing with integrated gradients. In: CVPR Workshops, vol. 2 (2019)
Rajaraman, S., et al.: Understanding the learned behavior of customized convolutional neural networks toward malaria parasite detection in thin blood smear images. J. Med. Imaging 5(3), 034501 (2018)
Ribeiro, M.T., Singh, S., Guestrin, C.: “Why should i trust you?” explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1135–1144 (2016)
Ribeiro, M.T., Singh, S., Guestrin, C.: Anchors: high-precision model-agnostic explanations. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018)
Samek, W., Montavon, G., Lapuschkin, S., Anders, C.J., Müller, K.R.: Explaining deep neural networks and beyond: a review of methods and applications. Proc. IEEE 109(3), 247–278 (2021)
Simonyan, K., Vedaldi, A., Zisserman, A.: Deep inside convolutional networks: Visualising image classification models and saliency maps (2013). arXiv preprint arXiv:1312.6034
Smilkov, D., Thorat, N., Kim, B., Viégas, F., Wattenberg, M.: Smoothgrad: removing noise by adding noise (2017)
Xiao, H., Rasul, K., Vollgraf, R.: Fashion-mnist: a novel image dataset for benchmarking machine learning algorithms (2017)
Zeiler, Matthew D.., Fergus, Rob: Visualizing and understanding convolutional networks. In: Fleet, David, Pajdla, Tomas, Schiele, Bernt, Tuytelaars, Tinne (eds.) ECCV 2014. LNCS, vol. 8689, pp. 818–833. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10590-1_53
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Angiulli, F., Fassetti, F., Nisticò, S. (2021). Finding Local Explanations Through Masking Models. In: Yin, H., et al. Intelligent Data Engineering and Automated Learning – IDEAL 2021. IDEAL 2021. Lecture Notes in Computer Science(), vol 13113. Springer, Cham. https://doi.org/10.1007/978-3-030-91608-4_46
Download citation
DOI: https://doi.org/10.1007/978-3-030-91608-4_46
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-91607-7
Online ISBN: 978-3-030-91608-4
eBook Packages: Computer ScienceComputer Science (R0)