Nothing Special   »   [go: up one dir, main page]

Skip to main content

Exploiting Intra and Inter-field Feature Interaction with Self-Attentive Network for CTR Prediction

  • Conference paper
  • First Online:
Web Information Systems Engineering – WISE 2021 (WISE 2021)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 13081))

Included in the following conference series:

  • 1222 Accesses

Abstract

Click-Through Rate (CTR) prediction models have achieved huge success mainly due to the ability to model arbitrary-order feature interactions. Recently, Self-Attention Network (SAN) has achieved significant success in CTR prediction. However, most of the existing SAN-based methods directly perform feature interaction operations on raw features. We argue that such operations, which ignore the intra-field information and inter-field affinity, are not designed to model richer feature interactions. In this paper, we propose an Intra and Inter-field Self-Attentive Network (IISAN) model for CTR prediction. Specifically, we first design an effective embedding block named Gated Fusion Layer (GFL) to refine raw features. Then, we utilize self-attention to model the feature interactions for each item to form meaningful high-order features via a multi-head attention mechanism. Next, we use the attention mechanism to aggregate all interactive embeddings. Finally, we assign DNNs in the prediction layer to generate the final output. Extensive experiments on three real public datasets show that IISAN achieves better performance than existing state-of-the-art approaches for CTR prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The field embedding \(\mathbf {e}_i\) is also known as the feature embedding. If the field is multivalent, the sum of feature embedding is used as the field embedding.

  2. 2.

    https://www.kaggle.com/c/criteo-display-ad-challenge.

  3. 3.

    https://www.kaggle.com/c/avazu-ctr-prediction.

  4. 4.

    https://grouplens.org/datasets/movielens/.

  5. 5.

    https://www.csie.ntu.edu.tw/~r01922136/kaggle-2014-criteo.pdf.

References

  1. Blondel, M., Fujino, A., Ueda, N., Ishihata, M.: Higher-order factorization machines. In: NIPS, pp. 3351–3359 (2016)

    Google Scholar 

  2. Cheng, C., Xia, F., Zhang, T., King, I., Lyu, M.R.: Gradient boosting factorization machines. In: RecSys, pp. 265–272. ACM (2014)

    Google Scholar 

  3. Cheng, H., et al.: Wide & deep learning for recommender systems. In: DLRS@RecSys, pp. 7–10. ACM (2016)

    Google Scholar 

  4. Cheng, W., Shen, Y., Huang, L.: Adaptive factorization network: Learning adaptive-order feature interactions. In: AAAI, pp. 3609–3616. AAAI Press (2020)

    Google Scholar 

  5. Gehring, J., Auli, M., Grangier, D., Yarats, D., Dauphin, Y.N.: Convolutional sequence to sequence learning. In: ICML, Proceedings of Machine Learning Research, vol. 70, pp. 1243–1252. PMLR (2017)

    Google Scholar 

  6. Guo, H., Tang, R., Ye, Y., Li, Z., He, X.: Deepfm: a factorization-machine based neural network for CTR prediction. In: IJCAI, pp. 1725–1731. ijcai.org (2017)

    Google Scholar 

  7. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778. IEEE Computer Society (2016)

    Google Scholar 

  8. He, X., Chua, T.: Neural factorization machines for sparse predictive analytics. In: SIGIR, pp. 355–364. ACM (2017)

    Google Scholar 

  9. Huang, T., Zhang, Z., Zhang, J.: Fibinet: combining feature importance and bilinear feature interaction for click-through rate prediction. In: RecSys, pp. 169–177. ACM (2019)

    Google Scholar 

  10. Juan, Y., Zhuang, Y., Chin, W., Lin, C.: Field-aware factorization machines for CTR prediction. In: RecSys, pp. 43–50. ACM (2016)

    Google Scholar 

  11. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: ICLR (Poster) (2015)

    Google Scholar 

  12. Li, Z., Cheng, W., Chen, Y., Chen, H., Wang, W.: Interpretable click-through rate prediction through hierarchical attention. In: WSDM, pp. 313–321. ACM (2020)

    Google Scholar 

  13. Lian, J., Zhou, X., Zhang, F., Chen, Z., Xie, X., Sun, G.: xdeepfm: Combining explicit and implicit feature interactions for recommender systems. In: KDD, pp. 1754–1763. ACM (2018)

    Google Scholar 

  14. Lu, J., Yang, J., Batra, D., Parikh, D.: Hierarchical question-image co-attention for visual question answering. In: NIPS, pp. 289–297 (2016)

    Google Scholar 

  15. Luo, Y., Zhou, H., Tu, W., Chen, Y., Dai, W., Yang, Q.: Network on network for tabular data classification in real-world applications. In: SIGIR, pp. 2317–2326. ACM (2020)

    Google Scholar 

  16. Rendle, S.: Factorization machines with LIBFM. ACM Trans. Intell. Syst. Technol. 3(3), 1–22 (2012)

    Article  Google Scholar 

  17. Shan, Y., Hoens, T.R., Jiao, J., Wang, H., Yu, D., Mao, J.C.: Deep crossing: Web-scale modeling without manually crafted combinatorial features. In: KDD, pp. 255–262. ACM (2016)

    Google Scholar 

  18. Song, W., et al.: Autoint: automatic feature interaction learning via self-attentive neural networks. In: CIKM, pp. 1161–1170. ACM (2019)

    Google Scholar 

  19. Tan, Z., Wang, M., Xie, J., Chen, Y., Shi, X.: Deep semantic role labeling with self-attention. In: AAAI, pp. 4929–4936. AAAI Press (2018)

    Google Scholar 

  20. Vaswani, A., et al.: Attention is all you need. In: NIPS, pp. 5998–6008 (2017)

    Google Scholar 

  21. Wang, R., Fu, B., Fu, G., Wang, M.: Deep & cross network for ad click predictions. In: ADKDD@KDD, pp. 1–7. ACM (2017)

    Google Scholar 

  22. Xiao, J., Ye, H., He, X., Zhang, H., Wu, F., Chua, T.: Attentional factorization machines: Learning the weight of feature interactions via attention networks. In: IJCAI, pp. 3119–3125. ijcai.org (2017)

    Google Scholar 

  23. Xiao, T., Xu, Y., Yang, K., Zhang, J., Peng, Y., Zhang, Z.: The application of two-level attention models in deep convolutional neural network for fine-grained image classification. In: CVPR, pp. 842–850. IEEE Computer Society (2015)

    Google Scholar 

  24. Xu, C., et al.: Graph contextualized self-attention network for session-based recommendation. In: IJCAI, pp. 3940–3946. ijcai.org (2019)

    Google Scholar 

  25. Zhao, Y., Liang, S., Ren, Z., Ma, J., Yilmaz, E., de Rijke, M.: Explainable user clustering in short text streams. In: SIGIR, pp. 155–164. ACM (2016)

    Google Scholar 

  26. Zhu, J., Liu, J., Yang, S., Zhang, Q., He, X.: Fuxictr: an open benchmark for click-through rate prediction (2020). CoRR abs/2009.05794

    Google Scholar 

  27. Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Disentangled self-attentive neural networks for click-through rate prediction (2021). CoRR abs/2101.03654

    Google Scholar 

Download references

Acknowledgements

This research was partially supported by NSFC (No.61876117, 61876217, 61872258, 61728205), Open Program of Key Lab of IIP of CAS (No. IIP2019-1) and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xuefeng Xian or Pengpeng Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zheng, S., Xian, X., Hao, Y., Sheng, V.S., Cui, Z., Zhao, P. (2021). Exploiting Intra and Inter-field Feature Interaction with Self-Attentive Network for CTR Prediction. In: Zhang, W., Zou, L., Maamar, Z., Chen, L. (eds) Web Information Systems Engineering – WISE 2021. WISE 2021. Lecture Notes in Computer Science(), vol 13081. Springer, Cham. https://doi.org/10.1007/978-3-030-91560-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-91560-5_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-91559-9

  • Online ISBN: 978-3-030-91560-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics