Nothing Special   »   [go: up one dir, main page]

Skip to main content

TRAMESINO: Traffic Memory System for Intelligent Optimization of Road Traffic Control

  • Conference paper
  • First Online:
Advanced Analytics and Learning on Temporal Data (AALTD 2021)

Abstract

Whether efficient road traffic control needs accurate modelling is still an open question. Additionally, whether complex models can dynamically adapt to traffic uncertainty is still a design challenge when optimizing traffic plans. What is certain is that the highly nonlinear and unpredictable real-world road traffic situations need timely actions. This study introduces TRAMESINO (TRAffic Memory System INtelligent Optimization). This novel approach to traffic control models only relevant causal action-consequence pairs within traffic data (e.g. green time - car count) in order to store traffic patterns and retrieve plausible decisions. Multiple such patterns are then combined to fully describe the traffic context over a road network and recalled whenever a new, but similar, traffic context is encountered. The system acts as a memory, encoding and manipulating traffic data using high-dimensional vectors using a spiking neural network learning substrate. This allows the system to learn temporal regularities in traffic data and adapt to abrupt changes, while keeping computation efficient and fast. We evaluated the performance of TRAMESINO on real-world data against relevant state-of-the-art approaches in terms of traffic metrics, robustness, and run-time. Our results emphasize TRAMESINO’s advantages in modelling traffic, adapting to disruptions, and timely optimizing traffic plans.

C. Axenie, R. Shi, D. Foroni, A. Wieder, M. A. H. Hassan, P. Sottovia, M. Grossi and S. Bortoli—Authors contributed equally to this research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Codebase at: https://github.com/omlstreaming/aaltd2021.

  2. 2.

    The SPRING-MUSTARD real-world dataset used in our experiments is available at: http://doi.org/10.5281/zenodo.5025264.

References

  1. Bracewell, R.N., Bracewell, R.N.: The Fourier Transform and Its Applications, vol. 31999. McGraw-Hill, New York (1986)

    MATH  Google Scholar 

  2. Day, C.M., Bullock, D.M.: Optimization of traffic signal offsets with high resolution event data. J. Transp. Eng. Part A Syst. 146(3), 04019076 (2020)

    Article  Google Scholar 

  3. Dhamija, S., Gon, A., Varakantham, P., Yeoh, W.: Online traffic signal control through sample-based constrained optimization. In: Proceedings of the International Conference on Automated Planning and Scheduling, vol. 30, pp. 366–374 (2020)

    Google Scholar 

  4. Eliasmith, C., Anderson, C.H.: Neural Engineering: Computation, Representation, and Dynamics in Neurobiological Systems. MIT Press, Cambridge (2003)

    Google Scholar 

  5. Gayler, R.W.: Vector symbolic architectures answer Jackendoff’s challenges for cognitive neuroscience. arXiv preprint cs/0412059 (2004)

    Google Scholar 

  6. Henry, J.J., Farges, J.L., Tuffal, J.: The PRODYN real time traffic algorithm. In: Control in Transportation Systems, pp. 305–310. Elsevier (1984)

    Google Scholar 

  7. Hoogendoorn, S.P., Bovy, P.H.: Generic gas-kinetic traffic systems modeling with applications to vehicular traffic flow. Transp. Res. Part B Methodol. 35(4), 317–336 (2001)

    Article  Google Scholar 

  8. Hopfield, J.J.: Neurons with graded response have collective computational properties like those of two-state neurons. Proc. Natl. Acad. Sci. 81(10), 3088–3092 (1984)

    Article  Google Scholar 

  9. Hu, H., Liu, H.X.: Arterial offset optimization using archived high-resolution traffic signal data. Transp. Res. Part C Emerg. Technol. 37, 131–144 (2013)

    Article  Google Scholar 

  10. Hunt, P., Robertson, D., Bretherton, R., Royle, M.C.: The scoot on-line traffic signal optimisation technique. Traffic Eng. Contr. 23(4), 190–192 (1982)

    Google Scholar 

  11. Köhler, E., Strehler, M.: Traffic signal optimization: combining static and dynamic models. Transp. Sci. 53(1), 21–41 (2019)

    Article  Google Scholar 

  12. Lendaris, G.G., Mathia, K., Saeks, R.: Linear Hopfield networks and constrained optimization. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 29(1), 114–118 (1999)

    Article  Google Scholar 

  13. Lopez, P.A., et al.: Microscopic traffic simulation using SUMO. In: The 21st IEEE International Conference on Intelligent Transportation Systems. IEEE (2018). https://elib.dlr.de/124092/

  14. Lowrie, P.: Scats, Sydney co-ordinated adaptive traffic system: A traffic responsive method of controlling urban traffic. Roads and Traffic Authority NSW, Traffic Control Section (1990)

    Google Scholar 

  15. Mirus, F., Blouw, P., Stewart, T.C., Conradt, J.: An investigation of vehicle behavior prediction using a vector power representation to encode spatial positions of multiple objects and neural networks. Front. Neurorobot. 13, 84 (2019)

    Article  Google Scholar 

  16. Nishikawa, I., Iritani, T., Sakakibara, K.: Improvements of the traffic signal control by complex-valued Hopfield networks. In: The 2006 IEEE International Joint Conference on Neural Network Proceedings, pp. 459–464. IEEE (2006)

    Google Scholar 

  17. Nishikawa, I., Kuroe, Y.: Dynamics of complex-valued neural networks and its relation to a phase oscillator system. In: Pal, N.R., Kasabov, N., Mudi, R.K., Pal, S., Parui, S.K. (eds.) ICONIP 2004. LNCS, vol. 3316, pp. 122–129. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30499-9_18

    Chapter  Google Scholar 

  18. Ouyang, Y., Zhang, R.Y., Lavaei, J., Varaiya, P.: Large-scale traffic signal offset optimization. IEEE Trans. Control Netw. Syst. 7(3), 1176–1187 (2020)

    Article  MathSciNet  Google Scholar 

  19. Plate, T.A.: Holographic Reduced Representation: Distributed representation for cognitive structures. CSLI Lecture Notes (2003)

    Google Scholar 

  20. Punzo, V., Simonelli, F.: Analysis and comparison of microscopic traffic flow models with real traffic microscopic data. Transp. Res. Rec. 1934(1), 53–63 (2005)

    Article  Google Scholar 

  21. Salort Sánchez, C., Wieder, A., Sottovia, P., Bortoli, S., Baumbach, J., Axenie, C.: GANNSTER: graph-augmented neural network spatio-temporal reasoner for traffic forecasting. In: Lemaire, V., Malinowski, S., Bagnall, A., Guyet, T., Tavenard, R., Ifrim, G. (eds.) AALTD 2020. LNCS (LNAI), vol. 12588, pp. 63–76. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-65742-0_5

    Chapter  Google Scholar 

  22. Sun, J., Liu, H.X.: Stochastic eco-routing in a signalized traffic network. Transp. Res. Procedia 7, 110–128 (2015)

    Article  Google Scholar 

  23. Treiber, M., Kesting, A.: Traffic Flow Dynamics: Data, Models and Simulation. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-32460-4

    Book  MATH  Google Scholar 

  24. Treiber, M., Kesting, A., Helbing, D.: Understanding widely scattered traffic flows, the capacity drop, and platoons as effects of variance-driven time gaps. Phys. Rev. E 74(1), 016123 (2006)

    Article  Google Scholar 

  25. Voelker, A.R., Crawford, E., Eliasmith, C.: Learning large-scale heteroassociative memories in spiking neurons. Unconv. Comput. Natural Comput. 7, 2014 (2014)

    Google Scholar 

  26. van Wageningen-Kessels, F., van Lint, H., Vuik, K., Hoogendoorn, S.: Genealogy of traffic flow models. EURO J. Transp. Log. 4(4), 445–473 (2014). https://doi.org/10.1007/s13676-014-0045-5

    Article  Google Scholar 

  27. Walsh, M.P., Flynn, M.E., O’Malley, M.J.: Augmented Hopfield network for mixed-integer programming. IEEE Trans. Neural Networks 10(2), 456–458 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rongye Shi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Axenie, C. et al. (2021). TRAMESINO: Traffic Memory System for Intelligent Optimization of Road Traffic Control. In: Lemaire, V., Malinowski, S., Bagnall, A., Guyet, T., Tavenard, R., Ifrim, G. (eds) Advanced Analytics and Learning on Temporal Data. AALTD 2021. Lecture Notes in Computer Science(), vol 13114. Springer, Cham. https://doi.org/10.1007/978-3-030-91445-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-91445-5_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-91444-8

  • Online ISBN: 978-3-030-91445-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics