Abstract
Nuclei classification in histology images is a fundamental task in histopathological analysis. However, automated nuclei classification methods usually face problems such as unbalanced samples and significant cell morphology variances, which hinders the training of models. Moreover, many existing methods only classify individual cell patches, which are small pieces of images including a single cell. When the classification results need to be located at the corresponding position of images, the accuracy will decline rapidly, resulting in difficulties for subsequent recognition. In this paper, we propose a novel multi-scale fully convolution network, named CFCN, with dilated convolution for fine-grained nuclei classification and localization in histology images. Our network consists of encoding and decoding part. The encoding part takes cross stage partial designed network as backbone for feature extraction, and we apply cascade dilated convolution module to enlarge the receptive field. The decoding part contains transposed convolution upsampling layers, and path aggregation network is applied to fuse multi-scale feature maps. The experimental results in a typical histology image dataset show that our proposed network outperforms the other state-of-the-art nuclei classification models, and the F1 score reaches 0.750. Source code is available at https://github.com/BYSora/CFCN.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Al-Kofahi, Y., Lassoued, W., Lee, W., Roysam, B.: Improved automatic detection and segmentation of cell nuclei in histopathology images. IEEE Trans. Biomed. Eng. 57(4), 841–852 (2009)
Basavanhally, A., et al.: Multi-field-of-view strategy for image-based outcome prediction of multi-parametric estrogen receptor-positive breast cancer histopathology: Comparison to oncotype dx. J. Pathol. Inf. 2, S1 (2011)
Chen, H., Dou, Q., Wang, X., Qin, J., Heng, P.A.: Mitosis detection in breast cancer histology images via deep cascaded networks. In: 30th AAAI Conference on Artificial Intelligence (2016)
Cireşan, D.C., Giusti, A., Gambardella, L.M., Schmidhuber, J.: Mitosis detection in breast cancer histology images with deep neural networks. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8150, pp. 411–418. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40763-5_51
Cruz-Roa, A., et al.: Automatic detection of invasive ductal carcinoma in whole slide images with convolutional neural networks. In: Medical Imaging 2014: Digital Pathology, vol. 9041, p. 904103. International Society for Optics and Photonics (2014)
Fleming, M., Ravula, S., Tatishchev, S.F., Wang, H.L.: Colorectal carcinoma: pathologic aspects. J. Gastrointest. Oncol. 3(3), 153 (2012)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2980–2988 (2017)
Liu, S., Qi, L., Qin, H., Shi, J., Jia, J.: Path aggregation network for instance segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8759–8768 (2018)
van Muijen, G.N., et al.: Cell type heterogeneity of cytokeratin expression in complex epithelia and carcinomas as demonstrated by monoclonal antibodies specific for cytokeratins nos. 4 and 13. Exp. Cell Res. 162(1), 97–113 (1986)
Neubeck, A., Van Gool, L.: Efficient non-maximum suppression. In: 18th International Conference on Pattern Recognition, ICPR 2006, vol. 3, pp. 850–855. IEEE (2006)
Park, C., Huang, J.Z., Ji, J.X., Ding, Y.: Segmentation, inference and classification of partially overlapping nanoparticles. IEEE Trans. Pattern Anal. Mach. Intell. 35(3), 1–1 (2012)
Sharma, H., et al.: A multi-resolution approach for combining visual information using nuclei segmentation and classification in histopathological images. In: VISAPP, vol. 3, pp. 37–46 (2015)
Sirinukunwattana, K., Raza, S.E.A., Tsang, Y.W., Snead, D.R., Cree, I.A., Rajpoot, N.M.: Locality sensitive deep learning for detection and classification of nuclei in routine colon cancer histology images. IEEE Trans. Med. Imaging 35(5), 1196–1206 (2016)
Wang, C.Y., Liao, H.Y.M., Wu, Y.H., Chen, P.Y., Hsieh, J.W., Yeh, I.H.: CSPNet: a new backbone that can enhance learning capability of CNN. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 390–391 (2020)
Wang, M., Zhou, X., Li, F., Huckins, J., King, R.W., Wong, S.T.: Novel cell segmentation and online SVM for cell cycle phase identification in automated microscopy. Bioinformatics 24(1), 94–101 (2008)
Wang, S., Jia, C., Chen, Z., Gao, X.: Signet ring cell detection with classification reinforcement detection network. In: Cai, Z., Mandoiu, I., Narasimhan, G., Skums, P., Guo, X. (eds.) ISBRA 2020. LNCS, vol. 12304, pp. 13–25. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-57821-3_2
Xie, Y., Xing, F., Kong, X., Su, H., Yang, L.: Beyond classification: structured regression for robust cell detection using convolutional neural network. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 358–365. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_43
Zhou, L., Zhang, C., Wu, M.: D-LinkNet: LinkNet with pretrained encoder and dilated convolution for high resolution satellite imagery road extraction. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 182–186 (2018)
Zhou, Y., Dou, Q., Chen, H., Qin, J., Heng, P.A.: SFCN-OPI: detection and fine-grained classification of nuclei using sibling FCN with objectness prior interaction. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018)
Acknowledgments
This work was supported by NSFC Grants 61772543, U19A2067; Science Foundation for Distinguished Young Scholars of Hunan Province (2020JJ2009); National Key R&D Program of China 2017YFB0202602, 2018YFC0910405, 2017YFC1311003, 2016YFC1302500; Science Foundation of Changsha kq2004010; JZ20195242029, JH20199142034, Z202069420652; The Funds of Peng Cheng Lab, State Key Laboratory of Chemo/Biosensing and Chemometrics; the Fundamental Research Funds for the Central Universities, and Guangdong Provincial Department of Science and Technology under grant No. 2016B090918122.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Xin, B., Yang, Y., Wei, D., Peng, S. (2021). CFCN: A Multi-scale Fully Convolutional Network with Dilated Convolution for Nuclei Classification and Localization. In: Wei, Y., Li, M., Skums, P., Cai, Z. (eds) Bioinformatics Research and Applications. ISBRA 2021. Lecture Notes in Computer Science(), vol 13064. Springer, Cham. https://doi.org/10.1007/978-3-030-91415-8_27
Download citation
DOI: https://doi.org/10.1007/978-3-030-91415-8_27
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-91414-1
Online ISBN: 978-3-030-91415-8
eBook Packages: Computer ScienceComputer Science (R0)