Abstract
In this paper, a machine learning-based methodology is proposed to measure the users’ sentiments expressed in textual feedback. The methodology uses collaborative filtering to evaluate the degree of positivity or negativity for every important aspect from each user’s perspective participating in the feedback analysis, hence proposing a uniform feedback analysis. Key aspects of a particular item or an issue are identified through topic modeling and taking into account the syntactic and semantic properties of words after processing the merged document obtained from all the feedbacks. Aggregate sentiment of an item is evaluated by considering the importance and sentiments of key aspects. This methodology can be used to analyze textual feedbacks of any domain with very little domain-dependent information. In this paper, feedbacks of two different domains have been analyzed and presented. Results show that the performances of the same items of different brands can be compared easily.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Liu, B.: Sentiment Analysis and Opinion Mining. Morgan & Claypool Publishers, San Francisco (2012)
Sasikala, P., Mary Immaculate Sheela, L.: Sentiment analysis of online product reviews using DLMNN and future prediction of online product using IANFIS. J. Big Data 7, 33 (2020)
Kumar, A., Jain, R.: Opinion sentiment analysis. Int. J. Adv. Appl. Sci. 5(3), 128–136 (2016)
Debois, S.: Ten Advantages and Disadvantages of Questionnaires, SurveyAnyplace, March 2019. https://surveyanyplace.com/questionnaire-pros-and-cons
Kumar, A., Jain, R.: A Collaborative filtering based sentiment analyzer to evaluate textual user feedbacks/opinions. Int. J. Appl. Eng. Res. 12, 6670–6677 (2017)
Dave, K., Lawrence, S., Pennock, D.: Mining the peanut gallery: opinion extraction and semantic classification of product reviews. In: Proceedings of WWW, pp. 519–528 (2003)
Esuli, A., Sebastiani, F.: Determining the semantic orientation of terms through gloss classification. In: Proceedings of the 14th ACM International Conference on Information and Knowledge Management, Bremen, Germany (2005)
Waila, P., Singh, V.K., Singh, M.K.: Evaluating machine learning and unsupervised semantic orientation approaches for sentiment analysis of textual reviews. In: Computational Intelligence & Computing Research (ICCIC), pp. 1–6 (2012)
Balage Filho, P.P., Pardo, T.A.: NILC USP: a hybrid system for sentiment analysis in twitter messages. In: Second Joint Conference on Lexical and Computational Semantics, vol. 2, pp. 568–572 (2013)
Ghiassi, M., Skinner, J., Zimbra, D.: Twitter brand sentiment analysis: a hybrid system using n-gram analysis and dynamic artificial neural network. Expert Syst. Appl. 40(16), 6266–6282 (2013)
Hu, M., Liu, B.: Mining and summarizing customer reviews. In: Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD 2004), pp.168–177. ACM, New York (2004)
Zhuang, L., Jing, F., Zhu, X.-Y.: Movie review mining and summarization. In: Proceedings of the 15th ACM International Conference on Information and Knowledge Management, CIKM 2006, pp. 43–50. ACM, New York (2006)
Shi, L., Lina, Z., Yijun, L.: Improving aspect extraction by augmenting a frequency-based method with web-based similarity measures. Inf. Process. Manage. 51(1), 58–67 (2015)
Jin, W., Ho, H.H., Srihari, R.K.: OpinionMiner: a novel machine learning system for web opinion mining and extraction. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD 2009) , pp. 1195–1204. ACM, New York (2009)
Shariaty, S., Moghaddam, S.: Fine-grained opinion mining using conditional random fields. In: Data Mining Workshops (ICDMW), IEEE 11th International Conference, pp. 109–114 (2011)
Li, F., Han, C., Huang, M., Zhu, X., Xia, Y.-J., Zhang, S., Yu, H.: Structure-aware review mining and summarization. In: Proceedings of the 23rd International Conference on Computational Linguistics, pp. 653–661 (2010)
Nandal, N., Tanwar, R., Pruthi, J.: Machine learning based aspect level sentiment analysis for Amazon products. Spatial Inf. Res. 28(5), 601–607 (2020). https://doi.org/10.1007/s41324-020-00320-2
Chuhan, W., Fangzhao, W., Sixing, W., Yuan, Z., Huang, Y.: A hybrid unsupervised method for aspect term and opinion target extraction. Knowl.-Based Syst. 148, 66–73 (2018)
Poria, S., Cambria, E., Gelbukh, A.: Aspect extraction for opinion mining with a deep convolutional neural network. Knowl.-Based Syst. 108, 42–49 (2016)
Hussein, D.: A survey on sentiment analysis challenges. J. King Saud Univ. Eng. Sci. 30(4), 330–338 (2018)
Maharani, W., Widyantoro, D., Khodra, M.: Aspect extraction in customer reviews using syntactic pattern. Procedia Comput. Sci. 59, 244–253 (2015)
Da’u, A., Salim, N.: Aspect extraction on user textual reviews using multi-channel convolutional neural network. PeerJ Comput. Sci. 5, e191 (2019)
Barnaghi, P., Kontonatsios, G., Bessis, N., Korkontzelos, Y.: Aspect extraction from reviews using convolutional neural networks and embeddings. In: Métais, E., Meziane, F., Vadera, S., Sugumaran, V., Saraee, M. (eds.) NLDB 2019. LNCS, vol. 11608, pp. 409–415. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-23281-8_37
SemEval Trial Data. http://alt.qcri.org/semeval2014/task4/data/uploads/laptops-trial.xml
SemEval Train Data. http://metashare.ilsp.gr:8080/repository/browse/semeval-2014-absa-laptop-reviews-train-data
Dragoni, M., Federici, M., Rexha, A.: An unsupervised aspect extraction strategy for monitoring real-time reviews stream. Inf. Process. Manage. 56(3), 1103–1118 (2019)
Valdivia, A., Luzón, M.V., Herrera, F.: Sentiment analysis in TripAdvisor. IEEE Intell. Syst. 32(4), 72–77 (2017)
Thelwall, M.: Heart and soul: sentiment strength detection in the social web with sentistrength. In: Holyst, J.A. (ed.) Cyberemotions: Collective Emotions in Cyberspace, pp. 119–134. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-43639-5
Ribeiro, F.N.: SentiBench: a benchmark comparison of state-of-the-practice sentiment analysis methods. EPJ Data Sci. 5(1), 1–29 (2016)
TripAdvisor. http://times.cs.uiuc.edu/~wang296/Data
Lappemana, J., Clark, R., Evans, J, Rubia, L.S., Gordon, P.: Studying social media sentiment using human validated analysis. MethodsX 7, 100867 (2020)
Ghallab, A., Mohsen, A., Ali, Y.: Arabic sentiment analysis: a systematic literature review. Appl. Comput. Intell. Soft Comput., 1–21 (2020)
Muthukumaran, S., Suresh, P.: Text analysis for product reviews for sentiment analysis using NLP methods. Int. J. Eng. Trends Technol. 47(8), 474–480 (2017)
Alsaeedi, A., Khan, M.Z.: A study on sentiment analysis techniques of twitter data. Int. J. Adv. Comput. Sci. Appl. 10(2), 361–374 (2019)
Cambria, E., Schuller, B., Xia, Y., Havasi, C.: New avenues in opinion mining and sentiment analysis. IEEE Intell. Syst. 28(2), 15–21 (2013)
Cambria, E., Poria, S., Gelbukh, A., Thelwall, M.: Sentiment analysis is a big suitcase. IEEE Intell. Syst. 32(6), 74–80 (2017)
Poria, S., Majumder, N., Hazarika, D., Cambria, E., Gelbukh, A., Hussain, A.: Multimodal sentiment analysis: addressing key issues and setting up the baselines. IEEE Intell. Syst. 33(6), 17–25 (2018)
Wladislav, S., Johannes, Z., Christian, W., André, K., Madjid, F.: Sentilyzer: aspect-oriented sentiment analysis of product reviews. In: International Conference on Computational Science and Computational Intelligence (CSCI), Las Vegas, NV, USA, pp. 270–273 (2018)
Cambria, E.: Affective computing and sentiment analysis. IEEE Intell. Syst. 31(2), 102–107 (2016)
Cambria, E., Hussuain, A.: Sentic computing: a common-sense-based framework for concept-level sentiment analysis (socio-affective computing). Cogn. Comput. 7, 183–185 (2015)
SenticNet. https://sentic.net/
Ma, Y., Peng, H., Khan, T., Cambria, E., Hussain, A.: Sentic LSTM: a hybrid network for targeted aspect-based sentiment analysis. Cogn. Comput. 10(4), 639–650 (2018). https://doi.org/10.1007/s12559-018-9549-x
Md Akhtar, S., Ekbal, A., Cambria, E.: How intense are you? Predicting intensities of emotions and sentiments using stacked ensemble [application notes]. IEEE Comput. Intell. Mag. 15(1), 64–75 (2020)
Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022 (2003)
George, L.E., Birla, L.: A study of topic modeling methods. In: Second International Conference on Intelligent Computing and Control Systems (ICICCS), Madurai, India, pp. 109–113 (2018)
SentiWordNet. https://github.com/aesuli/SentiWordNet
WordNet. https://wordnet.princeton.edu
Stanford Dependency Parser. http://nlp.stanford.edu:8080/parser/index.jsp
Madhoushi, Z., Hamdan, A.R., Zainudin, S.: Aspect-based sentiment analysis methods in recent years. Asia-Pac. J. Inf. Technol. Multimedia 7(2), 79–96 (2019)
Online American platform for teachers’ feedback. www.ratemyprofessor.com
Online Indian platform for teachers’ feedback. www.myfaveteacher.com
Textual feedbacks collected from 120 engineering students for 20 teachers of the University Institute of Engineering and Technology, CSJM University, Kanpur
Zhang, F., Zhang, Z., Lan, M.:. ECNU: a combination method and multiple features for aspect extraction and sentiment polarity classification. In: Proceedings of the 8th International Workshop on Semantic Evaluation (SemEval 2014), pp. 252–258 (2014)
Wang, W., Pan, S.J., Dahlmeier, D., Xiao, X.: Recursive neural conditional random fields for aspect-based sentiment analysis. arXiv preprint arXiv, pp. 616–626 (2016)
Kiritchenko, S., Zhu, X., Cherry, C., Mohammad, S.: Detecting aspects and sentiment in customer reviews. In: Proceedings of the 8th International Workshop on Semantic Evaluation (SemEval 2014), pp. 437–442 (2014)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Kumar, A., Jain, R. (2021). Uniform Textual Feedback Analysis for Effective Sentiment Analysis. In: Villazón-Terrazas, B., Ortiz-Rodríguez, F., Tiwari, S., Goyal, A., Jabbar, M. (eds) Knowledge Graphs and Semantic Web. KGSWC 2021. Communications in Computer and Information Science, vol 1459. Springer, Cham. https://doi.org/10.1007/978-3-030-91305-2_21
Download citation
DOI: https://doi.org/10.1007/978-3-030-91305-2_21
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-91304-5
Online ISBN: 978-3-030-91305-2
eBook Packages: Computer ScienceComputer Science (R0)