Nothing Special   »   [go: up one dir, main page]

Skip to main content

Uniform Textual Feedback Analysis for Effective Sentiment Analysis

  • Conference paper
  • First Online:
Knowledge Graphs and Semantic Web (KGSWC 2021)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1459))

Included in the following conference series:

Abstract

In this paper, a machine learning-based methodology is proposed to measure the users’ sentiments expressed in textual feedback. The methodology uses collaborative filtering to evaluate the degree of positivity or negativity for every important aspect from each user’s perspective participating in the feedback analysis, hence proposing a uniform feedback analysis. Key aspects of a particular item or an issue are identified through topic modeling and taking into account the syntactic and semantic properties of words after processing the merged document obtained from all the feedbacks. Aggregate sentiment of an item is evaluated by considering the importance and sentiments of key aspects. This methodology can be used to analyze textual feedbacks of any domain with very little domain-dependent information. In this paper, feedbacks of two different domains have been analyzed and presented. Results show that the performances of the same items of different brands can be compared easily.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Liu, B.: Sentiment Analysis and Opinion Mining. Morgan & Claypool Publishers, San Francisco (2012)

    Book  Google Scholar 

  2. Sasikala, P., Mary Immaculate Sheela, L.: Sentiment analysis of online product reviews using DLMNN and future prediction of online product using IANFIS. J. Big Data 7, 33 (2020)

    Google Scholar 

  3. Kumar, A., Jain, R.: Opinion sentiment analysis. Int. J. Adv. Appl. Sci. 5(3), 128–136 (2016)

    Google Scholar 

  4. Debois, S.: Ten Advantages and Disadvantages of Questionnaires, SurveyAnyplace, March 2019. https://surveyanyplace.com/questionnaire-pros-and-cons

  5. Kumar, A., Jain, R.: A Collaborative filtering based sentiment analyzer to evaluate textual user feedbacks/opinions. Int. J. Appl. Eng. Res. 12, 6670–6677 (2017)

    Google Scholar 

  6. Dave, K., Lawrence, S., Pennock, D.: Mining the peanut gallery: opinion extraction and semantic classification of product reviews. In: Proceedings of WWW, pp. 519–528 (2003)

    Google Scholar 

  7. Esuli, A., Sebastiani, F.: Determining the semantic orientation of terms through gloss classification. In: Proceedings of the 14th ACM International Conference on Information and Knowledge Management, Bremen, Germany (2005)

    Google Scholar 

  8. Waila, P., Singh, V.K., Singh, M.K.: Evaluating machine learning and unsupervised semantic orientation approaches for sentiment analysis of textual reviews. In: Computational Intelligence & Computing Research (ICCIC), pp. 1–6 (2012)

    Google Scholar 

  9. Balage Filho, P.P., Pardo, T.A.: NILC USP: a hybrid system for sentiment analysis in twitter messages. In: Second Joint Conference on Lexical and Computational Semantics, vol. 2, pp. 568–572 (2013)

    Google Scholar 

  10. Ghiassi, M., Skinner, J., Zimbra, D.: Twitter brand sentiment analysis: a hybrid system using n-gram analysis and dynamic artificial neural network. Expert Syst. Appl. 40(16), 6266–6282 (2013)

    Article  Google Scholar 

  11. Hu, M., Liu, B.: Mining and summarizing customer reviews. In: Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD 2004), pp.168–177. ACM, New York (2004)

    Google Scholar 

  12. Zhuang, L., Jing, F., Zhu, X.-Y.: Movie review mining and summarization. In: Proceedings of the 15th ACM International Conference on Information and Knowledge Management, CIKM 2006, pp. 43–50. ACM, New York (2006)

    Google Scholar 

  13. Shi, L., Lina, Z., Yijun, L.: Improving aspect extraction by augmenting a frequency-based method with web-based similarity measures. Inf. Process. Manage. 51(1), 58–67 (2015)

    Google Scholar 

  14. Jin, W., Ho, H.H., Srihari, R.K.: OpinionMiner: a novel machine learning system for web opinion mining and extraction. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD 2009) , pp. 1195–1204. ACM, New York (2009)

    Google Scholar 

  15. Shariaty, S., Moghaddam, S.: Fine-grained opinion mining using conditional random fields. In: Data Mining Workshops (ICDMW), IEEE 11th International Conference, pp. 109–114 (2011)

    Google Scholar 

  16. Li, F., Han, C., Huang, M., Zhu, X., Xia, Y.-J., Zhang, S., Yu, H.: Structure-aware review mining and summarization. In: Proceedings of the 23rd International Conference on Computational Linguistics, pp. 653–661 (2010)

    Google Scholar 

  17. Nandal, N., Tanwar, R., Pruthi, J.: Machine learning based aspect level sentiment analysis for Amazon products. Spatial Inf. Res. 28(5), 601–607 (2020). https://doi.org/10.1007/s41324-020-00320-2

    Article  Google Scholar 

  18. Chuhan, W., Fangzhao, W., Sixing, W., Yuan, Z., Huang, Y.: A hybrid unsupervised method for aspect term and opinion target extraction. Knowl.-Based Syst. 148, 66–73 (2018)

    Article  Google Scholar 

  19. Poria, S., Cambria, E., Gelbukh, A.: Aspect extraction for opinion mining with a deep convolutional neural network. Knowl.-Based Syst. 108, 42–49 (2016)

    Article  Google Scholar 

  20. Hussein, D.: A survey on sentiment analysis challenges. J. King Saud Univ. Eng. Sci. 30(4), 330–338 (2018)

    Google Scholar 

  21. Maharani, W., Widyantoro, D., Khodra, M.: Aspect extraction in customer reviews using syntactic pattern. Procedia Comput. Sci. 59, 244–253 (2015)

    Google Scholar 

  22. Da’u, A., Salim, N.: Aspect extraction on user textual reviews using multi-channel convolutional neural network. PeerJ Comput. Sci. 5, e191 (2019)

    Google Scholar 

  23. Barnaghi, P., Kontonatsios, G., Bessis, N., Korkontzelos, Y.: Aspect extraction from reviews using convolutional neural networks and embeddings. In: Métais, E., Meziane, F., Vadera, S., Sugumaran, V., Saraee, M. (eds.) NLDB 2019. LNCS, vol. 11608, pp. 409–415. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-23281-8_37

    Chapter  Google Scholar 

  24. SemEval Trial Data. http://alt.qcri.org/semeval2014/task4/data/uploads/laptops-trial.xml

  25. SemEval Train Data. http://metashare.ilsp.gr:8080/repository/browse/semeval-2014-absa-laptop-reviews-train-data

  26. Dragoni, M., Federici, M., Rexha, A.: An unsupervised aspect extraction strategy for monitoring real-time reviews stream. Inf. Process. Manage. 56(3), 1103–1118 (2019)

    Article  Google Scholar 

  27. Valdivia, A., Luzón, M.V., Herrera, F.: Sentiment analysis in TripAdvisor. IEEE Intell. Syst. 32(4), 72–77 (2017)

    Article  Google Scholar 

  28. Thelwall, M.: Heart and soul: sentiment strength detection in the social web with sentistrength. In: Holyst, J.A. (ed.) Cyberemotions: Collective Emotions in Cyberspace, pp. 119–134. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-43639-5

  29. Ribeiro, F.N.: SentiBench: a benchmark comparison of state-of-the-practice sentiment analysis methods. EPJ Data Sci. 5(1), 1–29 (2016)

    Article  Google Scholar 

  30. TripAdvisor. http://times.cs.uiuc.edu/~wang296/Data

  31. Lappemana, J., Clark, R., Evans, J, Rubia, L.S., Gordon, P.: Studying social media sentiment using human validated analysis. MethodsX 7, 100867 (2020)

    Google Scholar 

  32. Ghallab, A., Mohsen, A., Ali, Y.: Arabic sentiment analysis: a systematic literature review. Appl. Comput. Intell. Soft Comput., 1–21 (2020)

    Google Scholar 

  33. Muthukumaran, S., Suresh, P.: Text analysis for product reviews for sentiment analysis using NLP methods. Int. J. Eng. Trends Technol. 47(8), 474–480 (2017)

    Google Scholar 

  34. Alsaeedi, A., Khan, M.Z.: A study on sentiment analysis techniques of twitter data. Int. J. Adv. Comput. Sci. Appl. 10(2), 361–374 (2019)

    Google Scholar 

  35. Cambria, E., Schuller, B., Xia, Y., Havasi, C.: New avenues in opinion mining and sentiment analysis. IEEE Intell. Syst. 28(2), 15–21 (2013)

    Article  Google Scholar 

  36. Cambria, E., Poria, S., Gelbukh, A., Thelwall, M.: Sentiment analysis is a big suitcase. IEEE Intell. Syst. 32(6), 74–80 (2017)

    Article  Google Scholar 

  37. Poria, S., Majumder, N., Hazarika, D., Cambria, E., Gelbukh, A., Hussain, A.: Multimodal sentiment analysis: addressing key issues and setting up the baselines. IEEE Intell. Syst. 33(6), 17–25 (2018)

    Article  Google Scholar 

  38. Wladislav, S., Johannes, Z., Christian, W., André, K., Madjid, F.: Sentilyzer: aspect-oriented sentiment analysis of product reviews. In: International Conference on Computational Science and Computational Intelligence (CSCI), Las Vegas, NV, USA, pp. 270–273 (2018)

    Google Scholar 

  39. Cambria, E.: Affective computing and sentiment analysis. IEEE Intell. Syst. 31(2), 102–107 (2016)

    Article  Google Scholar 

  40. Cambria, E., Hussuain, A.: Sentic computing: a common-sense-based framework for concept-level sentiment analysis (socio-affective computing). Cogn. Comput. 7, 183–185 (2015)

    Article  Google Scholar 

  41. SenticNet. https://sentic.net/

  42. Ma, Y., Peng, H., Khan, T., Cambria, E., Hussain, A.: Sentic LSTM: a hybrid network for targeted aspect-based sentiment analysis. Cogn. Comput. 10(4), 639–650 (2018). https://doi.org/10.1007/s12559-018-9549-x

    Article  Google Scholar 

  43. Md Akhtar, S., Ekbal, A., Cambria, E.: How intense are you? Predicting intensities of emotions and sentiments using stacked ensemble [application notes]. IEEE Comput. Intell. Mag. 15(1), 64–75 (2020)

    Article  Google Scholar 

  44. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022 (2003)

    MATH  Google Scholar 

  45. George, L.E., Birla, L.: A study of topic modeling methods. In: Second International Conference on Intelligent Computing and Control Systems (ICICCS), Madurai, India, pp. 109–113 (2018)

    Google Scholar 

  46. SentiWordNet. https://github.com/aesuli/SentiWordNet

  47. WordNet. https://wordnet.princeton.edu

  48. Stanford Dependency Parser. http://nlp.stanford.edu:8080/parser/index.jsp

  49. Madhoushi, Z., Hamdan, A.R., Zainudin, S.: Aspect-based sentiment analysis methods in recent years. Asia-Pac. J. Inf. Technol. Multimedia 7(2), 79–96 (2019)

    Google Scholar 

  50. Online American platform for teachers’ feedback. www.ratemyprofessor.com

  51. Online Indian platform for teachers’ feedback. www.myfaveteacher.com

  52. Textual feedbacks collected from 120 engineering students for 20 teachers of the University Institute of Engineering and Technology, CSJM University, Kanpur

    Google Scholar 

  53. Zhang, F., Zhang, Z., Lan, M.:. ECNU: a combination method and multiple features for aspect extraction and sentiment polarity classification. In: Proceedings of the 8th International Workshop on Semantic Evaluation (SemEval 2014), pp. 252–258 (2014)

    Google Scholar 

  54. Wang, W., Pan, S.J., Dahlmeier, D., Xiao, X.: Recursive neural conditional random fields for aspect-based sentiment analysis. arXiv preprint arXiv, pp. 616–626 (2016)

    Google Scholar 

  55. Kiritchenko, S., Zhu, X., Cherry, C., Mohammad, S.: Detecting aspects and sentiment in customer reviews. In: Proceedings of the 8th International Workshop on Semantic Evaluation (SemEval 2014), pp. 437–442 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kumar, A., Jain, R. (2021). Uniform Textual Feedback Analysis for Effective Sentiment Analysis. In: Villazón-Terrazas, B., Ortiz-Rodríguez, F., Tiwari, S., Goyal, A., Jabbar, M. (eds) Knowledge Graphs and Semantic Web. KGSWC 2021. Communications in Computer and Information Science, vol 1459. Springer, Cham. https://doi.org/10.1007/978-3-030-91305-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-91305-2_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-91304-5

  • Online ISBN: 978-3-030-91305-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics