Abstract
Metric Temporal Logic (MTL) and Timed Propositional Temporal Logic (TPTL) are prominent real-time extensions of Linear Temporal Logic (LTL). In general, the satisfiability checking problem for these extensions is undecidable when both the future U and the past S modalities are used. In a classical result, the satisfiability checking for MITL[U,S], a non-punctual fragment of MTL[U,S], is shown to be decidable with EXPSPACE complete complexity. Given that this notion of non-punctuality does not recover decidability in the case of TPTL[U,S], we propose a generalization of non-punctuality called non-adjacency for TPTL[U,S], and focus on its 1-variable fragment, 1-TPTL[U,S]. While non-adjacent 1-TPTL[U,S] appears to be a very small fragment, it is strictly more expressive than MITL. As our main result, we show that the satisfiability checking problem for non-adjacent 1-TPTL[U,S] is decidable with EXPSPACE complete complexity.
This work is partially supported by the European Research Council through the SENTIENT project (ERC-2017-STG #755953).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Here T is a special symbol denoting the timestamp of the present point and x is the clock that was frozen when x. was asserted.
- 2.
We \(\mathsf {A}'_k\) instead of \(\mathsf {A}_k\) in the formulae below due to the strict inequalities in the semantics of \(\mathsf {PnEMTL}\) modalities.
- 3.
Unbounded intervals can be eliminated using \(\mathcal {F}^{k}_{\mathsf {I_1, I_2, \ldots , I_{k{-}2},} [l_1, \infty ) [l_2, \infty )}(\mathsf {A}_1, \ldots , \mathsf {A}_{k+1}) {\equiv }\) \(\mathcal {F}^{k}_{\mathsf {I_1, I_2, \ldots , I_{k{-}2},} [l_1, \mathsf {cmax}) [l_2, \infty )}(\mathsf {A}_1, \ldots , \mathsf {A}_{k+1}) {\vee } \mathcal {F}^{k-1}_{\mathsf {I_1, I_2, \ldots , I_{k{-}2},} [l_2, \infty )}(\mathsf {A}_1, \ldots , \mathsf {A}_{k-1},\mathsf {A}_{k} \cdot \mathsf {A}_{k+1})\).
References
Alur, R., Feder, T., Henzinger, T.: The benefits of relaxing punctuality. J. ACM 43(1), 116–146 (1996)
Alur, R., Henzinger, T.A.: Real-time logics: complexity and expressiveness. Inf. Comput. 104(1), 35–77 (1993)
Alur, R., Henzinger, T.A.: A really temporal logic. J. ACM 41(1), 181–203 (1994)
Bouyer, P., Chevalier, F., Markey, N.: On the expressiveness of TPTL and MTL. In: Sarukkai, S., Sen, S. (eds.) FSTTCS 2005. LNCS, vol. 3821, pp. 432–443. Springer, Heidelberg (2005). https://doi.org/10.1007/11590156_35
Ferrère, T.: The compound interest in relaxing punctuality. In: Havelund, K., Peleska, J., Roscoe, B., de Vink, E. (eds.) FM 2018. LNCS, vol. 10951, pp. 147–164. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-95582-7_9
Gastin, P., Oddoux, D.: LTL with past and two-way very-weak alternating automata. In: Rovan, B., Vojtáš, P. (eds.) MFCS 2003. LNCS, vol. 2747, pp. 439–448. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45138-9_38
Haase, C., Ouaknine, J., Worrell, J.: On process-algebraic extensions of metric temporal logic. In: Roscoe, A.W., Jones, C.B., Wood, K.R. (eds.) Reflections on the Work of C.A.R. Hoare, pp. 283–300. Springer, London (2010). https://doi.org/10.1007/978-1-84882-912-1_13
Henzinger, T.A., Raskin, J.-F., Schobbens, P.-Y.: The regular real-time languages. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, pp. 580–591. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0055086
Hirshfeld, Y., Rabinovich, A.: An expressive temporal logic for real time. In: Královič, R., Urzyczyn, P. (eds.) MFCS 2006. LNCS, vol. 4162, pp. 492–504. Springer, Heidelberg (2006). https://doi.org/10.1007/11821069_43
Hirshfeld, Y., Rabinovich, A.: Expressiveness of metric modalities for continuous time. In: Grigoriev, D., Harrison, J., Hirsch, E.A. (eds.) CSR 2006. LNCS, vol. 3967, pp. 211–220. Springer, Heidelberg (2006). https://doi.org/10.1007/11753728_23
Ho, H.-M.: Revisiting timed logics with automata modalities. In: Ozay, N., Prabhakar, P. (eds.) Proceedings of the 22nd ACM International Conference on Hybrid Systems: Computation and Control, HSCC 2019, Montreal, QC, Canada, 16–18 April 2019, pp. 67–76. ACM (2019)
Madnani, K., Krishna, S.N., Pandya, P.K.: Partially punctual metric temporal logic is decidable. In: TIME, pp. 174–183 (2014)
Krishna, S.N., Madnani, K., Mazo Jr., M., Pandya, P.K.: Generalizing non-punctuality for timed temporal logic with freeze quantifiers. CoRR, abs/2105.09534 (2021)
Krishna, S.N., Madnani, K., Pandya, P.K.: Making metric temporal logic rational. In: Larsen, K.G., Bodlaender, H.L., Raskin, J.-F. (eds.) 42nd International Symposium on Mathematical Foundations of Computer Science, MFCS 2017, 21–25 August 2017 - Aalborg, Denmark. LIPIcs, vol. 83, pp. 77:1–77:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2017)
Krishna, S.N., Madnani, K., Pandya, P.K.: Logics meet 1-clock alternating timed automata. In: Schewe, S., Zhang, L. (eds.) 29th International Conference on Concurrency Theory, CONCUR 2018, 4–7 September 2018, Beijing, China. LIPIcs, vol. 118, pp. 39:1–39:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2018)
Madnani, K.N.: On decidable extensions of metric temporal logic. Ph.D. thesis, Indian Institute of Technology Bombay, Mumbai, India (2019)
Ouaknine, J., Worrell, J.: On the decidability of metric temporal logic. In: LICS, pp. 188–197 (2005)
Pandya, P.K., Shah, S.S.: On expressive powers of timed logics: comparing boundedness, non-punctuality, and deterministic freezing. In: Katoen, J.-P., König, B. (eds.) CONCUR 2011. LNCS, vol. 6901, pp. 60–75. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23217-6_5
Prabhakar, P., D’Souza, D.: On the expressiveness of MTL with past operators. In: Asarin, E., Bouyer, P. (eds.) FORMATS 2006. LNCS, vol. 4202, pp. 322–336. Springer, Heidelberg (2006). https://doi.org/10.1007/11867340_23
Rabinovich, A.: Complexity of metric temporal logic with counting and pnueli modalities. In: FORMATS, pp. 93–108 (2008)
Rabinovich, A.: Complexity of metric temporal logics with counting and the pnueli modalities. Theor. Comput. Sci. 411(22–24), 2331–2342 (2010)
Raskin, J.F.: Logics, automata and classical theories for deciding real time. Ph.D. thesis, Universite de Namur (1999)
Wilke, T.: Specifying timed state sequences in powerful decidable logics and timed automata. In: Formal Techniques in Real-Time and Fault-Tolerant Systems, Third International Symposium Organized Jointly with the Working Group Provably Correct Systems - ProCoS, Lübeck, Germany, 19–23 September, Proceedings, pp. 694–715 (1994)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Krishna, S.N., Madnani, K., Mazo, M., Pandya, P.K. (2021). Generalizing Non-punctuality for Timed Temporal Logic with Freeze Quantifiers. In: Huisman, M., Păsăreanu, C., Zhan, N. (eds) Formal Methods. FM 2021. Lecture Notes in Computer Science(), vol 13047. Springer, Cham. https://doi.org/10.1007/978-3-030-90870-6_10
Download citation
DOI: https://doi.org/10.1007/978-3-030-90870-6_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-90869-0
Online ISBN: 978-3-030-90870-6
eBook Packages: Computer ScienceComputer Science (R0)