Abstract
Choreography automata are a model of choreographies envisaging high-level views of the behaviour of communicating systems as finite-state automata. The behaviour of each participant of a choreography can be obtained via a projection operation from a choreography automaton. The system of participants obtained by projection is well-behaved if the choreography automaton satisfies some well-formedness conditions. We present Corinne, a tool allowing one to render, compute projections of and compose choreography automata, as well as to check well-formedness conditions.
Research partly supported by the EU H2020 RISE programme under the Marie Skłodowska-Curie grant agreement No 778233, by the MIUR project PRIN 2017FTXR7S “IT-MaTTerS" (Methods and Tools for Trustworthy Smart Systems), and by the Progetto di Ateneo Pia.Ce.Ri - UNICT. The third and fourth authors have also been partially supported by INdAM as members of GNCS (Gruppo Nazionale per il Calcolo Scientifico). The authors thank the reviewers for their interesting comments and suggestions, which helped us to improve the paper. The third author wishes to thank also Mariangiola Dezani-Ciancaglini for her support.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
In [4] also minimisation is performed, but this is not needed for the correctness of the constructions, and it is not currently performed by
- 2.
Determinisation required for projection is computed using the classical subset construction for FSAs with \(\epsilon \)-transitions.
References
Barbanera, F., de’Liguoro, U., Hennicker, R.: Global types for open systems. In: Bartoletti, M., Knight, S. (eds.) ICE, EPTCS, vol. 279, pp. 4–20 (2018)
Barbanera, F., de’Liguoro, U., Hennicker, R.: Connecting open systems of communicating finite state machines. J. Logic Algebr. Methods Program. 109 (2019). https://doi.org/10.1016/j.jlamp.2019.07.004. Extended version of [1]
Barbanera, F., Dezani-Ciancaglini, M., Lanese, I., Tuosto, E.: Composition and decomposition of multiparty sessions. J. Logic Algebr. Methods Program. 119, 100620 (2021)
Barbanera, F., Lanese, I., Tuosto, E.: Choreography automata. In: Bliudze, S., Bocchi, L. (eds.) COORDINATION 2020. LNCS, vol. 12134, pp. 86–106. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-50029-0_6
Barbanera, F., Lanese, I., Tuosto, E.: Composition of choreography automata. Technical reports 2107.06727, Arxiv, July 2021. http://arxiv.org/abs/2107.06727
Basile, D., ter Beek, M.H., Pugliese, R.: Synthesis of orchestrations and choreographies: bridging the gap between supervisory control and coordination of services. Logic. Methods Comput. Sci. 16(2) (2020)
Basile, D., Degano, P., Ferrari, G.-L., Tuosto, E.: Playing with our CAT and communication-centric applications. In: Albert, E., Lanese, I. (eds.) FORTE 2016. LNCS, vol. 9688, pp. 62–73. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39570-8_5
Basile, D., Degano, P., Ferrari, G., Tuosto, E.: Relating two automata-based models of orchestration and choreography. J. Logic Algebr. Methods Program. 85(3), 425–446 (2016)
Basile, D., ter Beek, M.H.: A clean and efficient implementation of choreography synthesis for behavioural contracts. In: Damiani, F., Dardha, O. (eds.) COORDINATION 2021. LNCS, vol. 12717, pp. 225–238. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-78142-2_14
Brand, D., Zafiropulo, P.: On communicating finite-state machines. J. ACM 30(2), 323–342 (1983)
Bravetti, M., Zavattaro, G.: Towards a unifying theory for choreography conformance and contract compliance. In: Lumpe, M., Vanderperren, W. (eds.) SC 2007. LNCS, vol. 4829, pp. 34–50. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-77351-1_4
Carbone, M., Honda, K., Yoshida, N.: Structured communication-centred programming for web services. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 2–17. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71316-6_2
Carbone, M., Montesi, F.: Deadlock-freedom-by-design: multiparty asynchronous global programming. In: POPL, pp. 263–274 (2013). https://doi.org/10.1145/2429069.2429101
Corinne github repository. https://github.com/lanese/corinne-3
Coto, A., Guanciale, R., Lange, J., Tuosto, E.: ChorGram: tool support for choreographic development (2015). https://bitbucket.org/emlio_tuosto/chorgram/wiki/Home
Coto, A., Guanciale, R., Tuosto, E.: An abstract framework for choreographic testing. In: Lange, J., Mavridou, A., Safina, L., Scalas, A. (eds.) Proceedings 13th Interaction and Concurrency Experience, ICE 2020, Online, 19 June 2020. EPTCS, vol. 324, pp. 43–60 (2020)
Coto, A., Guanciale, R., Tuosto, E.: Choreographic development of message-passing applications. In: Bliudze, S., Bocchi, L. (eds.) COORDINATION 2020. LNCS, vol. 12134, pp. 20–36. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-50029-0_2
Coto, A., Guanciale, R., Tuosto, E.: An abstract framework for choreographic testing. J. Logic Algebraic Methods Program. 123, 100712 (2021). Extended version of [16]
Cruz-Filipe, L., Montesi, F.: Procedural choreographic programming. In: Bouajjani, A., Silva, A. (eds.) FORTE 2017. LNCS, vol. 10321, pp. 92–107. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60225-7_7
Demangeon, R., Honda, K.: Nested protocols in session types. In: Koutny, M., Ulidowski, I. (eds.) CONCUR 2012. LNCS, vol. 7454, pp. 272–286. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32940-1_20
Dezani-Ciancaglini, M., Ghilezan, S., Jaksic, S., Pantovic, J., Yoshida, N.: Precise subtyping for synchronous multiparty sessions. In: Gay, S., Alglave, J. (eds.) Proceedings Eighth International Workshop on Programming Language Approaches to Concurrency- and Communication-cEntric Software, PLACES 2015, London, UK, 18th April 2015. EPTCS, vol. 203, pp. 29–43 (2015). https://doi.org/10.4204/EPTCS.203.3
Domitilla github repository. https://github.com/dedo94/Domitilla
The DOT Language. https://graphviz.org/doc/info/lang.html
Fu, X., Bultan, T., Su, J.: Conversation protocols: a formalism for specification and verification of reactive electronic services. Theoret. Comput. Sci. 328(1–2), 19–37 (2004). https://doi.org/10.1016/.tcs.2004.07.004
Graphviz 0.16 - Simple Python interface for Graphviz. https://pypi.org/project/graphviz/
Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. In: Necula, G.C., Wadler, P. (eds.) POPL, pp. 273–284. ACM Press (2008)
Hüttel, H., et al.: Foundations of session types and behavioural contracts. ACM Comput. Surv. 49(1), 3:1–3:36 (2016)
Kavantzas, N., Burdett, D., Ritzinger, G., Fletcher, T., Lafon, Y., Barreto, C.: Web services choreography description language version 1.0. Technical report, W3C (2005). http://www.w3.org/TR/ws-cdl-10/
Lange, J., Tuosto, E., Yoshida, N.: A tool for choreography-based analysis of message-passing software. In: Gay, S., Ravara, A. (eds.) Behavioural Types: From Theory to Tools, chap. 6, pp. 125–146. Automation, Control and Robotics, River (2017)
Ng, N., Yoshida, N., Honda, K.: Multiparty session c: safe parallel programming with message optimisation. In: Furia, C.A., Nanz, S. (eds.) TOOLS 2012. LNCS, vol. 7304, pp. 202–218. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30561-0_15
OMG: Business Process Model and Notation (BPMN), Version 2.0, January 2011. https://www.omg.org/spec/BPMN
Parr, T.: Antlr. https://www.antlr.org/index.html
Severi, P., Dezani-Ciancaglini, M.: Observational equivalence for multiparty sessions. Fundam. Informaticae 170(1–3), 267–305 (2019). https://doi.org/10.3233/FI-2019-1863
TKinter - Python interface to Tcl/Tk. https://docs.python.org/3/library/tkinter.html
Tuosto, E., Guanciale, R.: Semantics of global view of choreographies. J. Logic Algebr. Methods Program. 95, 17–40 (2018)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Orlando, S., Pasquale, V.D., Barbanera, F., Lanese, I., Tuosto, E. (2021). Corinne, a Tool for Choreography Automata. In: Salaün, G., Wijs, A. (eds) Formal Aspects of Component Software. FACS 2021. Lecture Notes in Computer Science(), vol 13077. Springer, Cham. https://doi.org/10.1007/978-3-030-90636-8_5
Download citation
DOI: https://doi.org/10.1007/978-3-030-90636-8_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-90635-1
Online ISBN: 978-3-030-90636-8
eBook Packages: Computer ScienceComputer Science (R0)