Nothing Special   »   [go: up one dir, main page]

Skip to main content

Lattice-Based Secure Biometric Authentication for Hamming Distance

  • Conference paper
  • First Online:
Information Security and Privacy (ACISP 2021)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 13083))

Included in the following conference series:

Abstract

Biometric authentication is a protocol which verifies a user’s authority by comparing her biometric with the pre-enrolled biometric template stored in the server. Biometric authentication is convenient and reliable; however, it also brings privacy issues since biometric information is irrevocable when exposed.

In this paper, we propose a new user-centric secure biometric authentication protocol for Hamming distance. The biometric data is always encrypted so that the verification server learns nothing about biometric information beyond the Hamming distance between enrolled and queried templates. To achieve this, we construct a single-key function-hiding inner product functional encryption for binary strings whose security is based on a variant of the Learning with Errors problem. Our protocol consists of a single round, and is almost optimal in the sense that its time and space complexity grow quasi-linearly with the size of biometric templates. On implementation with concrete parameters, for binary strings of size ranging from 579 to 18,229 bytes (according to NIST IREX IX report), our scheme outperforms previous work from the literature.

This research was conducted while the second, third and fourth authors were at Seoul National University and the fifth author was at Samsung Research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Iris template size analyzed in NIST IRES IX report (2018) [28] ranges from 579 to 18, 229 bytes.

  2. 2.

    All other FH-IPFE [8, 13, 33, 34] do not provide post quantum security.

  3. 3.

    https://github.com/dwkim606/IPPBA.

  4. 4.

    https://bitbucket.org/malb/lwe-estimator.

  5. 5.

    THRIVE [21] insists that their scheme is secure under (static) malicious adversary, but they assume that the end-user (client) performs the encryption honestly.

  6. 6.

    They reported 24 s of running time for biometric of size 16, 384 bits which is roughly \(\times \frac{1}{10}\) of the biometric considered in our parameter II.

  7. 7.

    However, it is not clarified in [14] which OT is used in their experiment.

References

  1. Abdalla, M., Bourse, F., De Caro, A., Pointcheval, D.: Simple functional encryption schemes for inner products. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 733–751. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46447-2_33

    Chapter  Google Scholar 

  2. Abidin, A., Aly, A., Rúa, E.A., Mitrokotsa, A.: Efficient verifiable computation of XOR for biometric authentication. In: Foresti, S., Persiano, G. (eds.) CANS 2016. LNCS, vol. 10052, pp. 284–298. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48965-0_17

    Chapter  Google Scholar 

  3. Abidin, A., Mitrokotsa, A.: Security aspects of privacy-preserving biometric authentication based on ideal lattices and ring-LWE. In: 2014 IEEE International Workshop on Information Forensics and Security (WIFS), pp. 60–65. IEEE (2014)

    Google Scholar 

  4. Agrawal, S., Libert, B., Maitra, M., Titiu, R.: Adaptive simulation security for inner product functional encryption. In: Kiayias, A., Kohlweiss, M., Wallden, P., Zikas, V. (eds.) PKC 2020. LNCS, vol. 12110, pp. 34–64. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45374-9_2

    Chapter  Google Scholar 

  5. Agrawal, S., Libert, B., Stehlé, D.: Fully secure functional encryption for inner products, from standard assumptions. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9816, pp. 333–362. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53015-3_12

    Chapter  Google Scholar 

  6. Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with errors. J. Math. Cryptol. 9(3), 169–203 (2015)

    Article  MathSciNet  Google Scholar 

  7. Alexander, D.: 5.6 million fingerprints stolen in U.S. personnel data hack: government (2015). https://www.reuters.com/article/us-usa-cybersecurity-fingerprints/5-6-million-fingerprints-stolen-in-u-s-personnel-data-hack-government-idUSKCN0RN1V820150923

  8. Bishop, A., Jain, A., Kowalczyk, L.: Function-hiding inner product encryption. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9452, pp. 470–491. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48797-6_20

    Chapter  Google Scholar 

  9. Brakerski, Z., Langlois, A., Peikert, C., Regev, O., Stehlé, D.: Classical hardness of learning with errors. In: Proceedings of the Forty-Fifth Annual ACM Symposium on Theory of Computing, pp. 575–584 (2013)

    Google Scholar 

  10. Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from ring-LWE and security for key dependent messages. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 505–524. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-9_29

    Chapter  Google Scholar 

  11. Bringer, J., Chabanne, H., Patey, A.: SHADE: Secure HAmming DistancE computation from oblivious transfer. In: Adams, A.A., Brenner, M., Smith, M. (eds.) FC 2013. LNCS, vol. 7862, pp. 164–176. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41320-9_11

    Chapter  Google Scholar 

  12. Chun, H., Elmehdwi, Y., Li, F., Bhattacharya, P., Jiang, W.: Outsourceable two-party privacy-preserving biometric authentication. In: Proceedings of the 9th ACM Symposium on Information, Computer and Communications Security, pp. 401–412. ACM (2014)

    Google Scholar 

  13. Datta, P., Dutta, R., Mukhopadhyay, S.: Functional encryption for inner product with full function privacy. In: Cheng, C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.) PKC 2016. LNCS, vol. 9614, pp. 164–195. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49384-7_7

    Chapter  Google Scholar 

  14. Gasti, P., Šeděnka, J., Yang, Q., Zhou, G., Balagani, K.S.: Secure, fast, and energy-efficient outsourced authentication for smartphones. IEEE Trans. Inf. Forensics Secur. 11(11), 2556–2571 (2016)

    Article  Google Scholar 

  15. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceedings of the Forty-First Annual ACM Symposium on Theory of Computing, STOC 2009, pp. 169–178. ACM, New York (2009)

    Google Scholar 

  16. Huang, Y., Evans, D., Katz, J., Malka, L.: Faster secure two-party computation using garbled circuits. In: USENIX Security Symposium, vol. 201, pp. 331–335 (2011)

    Google Scholar 

  17. Information technology - security techniques - biometric information protection, standard, international organization for standardization. ISO/IEC24745:2011 (2011)

    Google Scholar 

  18. Jain, A.K., Nandakumar, K., Nagar, A.: Biometric template security. EURASIP J. Adv. Signal Process. 2008, 113 (2008)

    Article  Google Scholar 

  19. Jain, A.K., Prabhakar, S., Hong, L., Pankanti, S.: FingerCode: a filterbank for fingerprint representation and matching. In: Conference on Computer Vision and Pattern Recognition (CVPR), p. 2187. IEEE Computer Society (1999)

    Google Scholar 

  20. Jarrous, A., Pinkas, B.: Secure hamming distance based computation and its applications. In: Abdalla, M., Pointcheval, D., Fouque, P.-A., Vergnaud, D. (eds.) ACNS 2009. LNCS, vol. 5536, pp. 107–124. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01957-9_7

    Chapter  Google Scholar 

  21. Karabat, C., Kiraz, M.S., Erdogan, H., Savas, E.: Thrive: threshold homomorphic encryption based secure and privacy preserving biometric verification system. EURASIP J. Adv. Signal Process. 2015(1), 71 (2015)

    Article  Google Scholar 

  22. Katz, J., Yung, M.: Threshold cryptosystems based on factoring. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 192–205. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-36178-2_12

    Chapter  Google Scholar 

  23. Kim, S., Kim, J., Seo, J.H.: A new approach to practical function-private inner product encryption. Theoret. Comput. Sci. 783, 22–40 (2019)

    Article  MathSciNet  Google Scholar 

  24. Kim, S., Lewi, K., Mandal, A., Montgomery, H., Roy, A., Wu, D.J.: Function-hiding inner product encryption is practical. In: Catalano, D., De Prisco, R. (eds.) SCN 2018. LNCS, vol. 11035, pp. 544–562. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98113-0_29

    Chapter  Google Scholar 

  25. Micciancio, D.: On the hardness of learning with errors with binary secrets. Theory Comput. 14(1), 1–17 (2018)

    Article  MathSciNet  Google Scholar 

  26. Naehrig, M., Lauter, K., Vaikuntanathan, V.: Can homomorphic encryption be practical? In: Proceedings of the 3rd ACM Workshop on Cloud Computing Security Workshop, pp. 113–124. ACM (2011)

    Google Scholar 

  27. Prabhakar, S., Pankanti, S., Jain, A.K.: Biometric recognition: security and privacy concerns. IEEE Secur. Priv. 99(2), 33–42 (2003)

    Article  Google Scholar 

  28. Quinn, G.W., Matey, J.R., Grother, P.J.: IREX IX part one, performance of iris recognition algorithms. NIST Interagency/Internal Report (NISTIR) - 8207 (2018)

    Google Scholar 

  29. Rane, S., Wang, Y., Draper, S.C., Ishwar, P.: Secure biometrics: concepts, authentication architectures, and challenges. IEEE Signal Process. Mag. 30(5), 51–64 (2013)

    Article  Google Scholar 

  30. Regev, O.: The learning with errors problem. In: Proceedings of the 2010 IEEE 25th Annual Conference on Computational Complexity, pp. 191–204 (2010)

    Google Scholar 

  31. Roberts, C.: Biometric attack vectors and defences. Comput. Secur. 26(1), 14–25 (2007)

    Article  Google Scholar 

  32. Simoens, K., Bringer, J., Chabanne, H., Seys, S.: A framework for analyzing template security and privacy in biometric authentication systems. IEEE Trans. Inf. Forensics Secur. 7(2), 833–841 (2012)

    Article  Google Scholar 

  33. Tomida, J., Abe, M., Okamoto, T.: Efficient functional encryption for inner-product values with full-hiding security. In: Bishop, M., Nascimento, A.C.A. (eds.) ISC 2016. LNCS, vol. 9866, pp. 408–425. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45871-7_24

    Chapter  MATH  Google Scholar 

  34. Tomida, J., Takashima, K.: Unbounded inner product functional encryption from bilinear maps. Jpn. J. Ind. Appl. Math. 37(3), 723–779 (2020). https://doi.org/10.1007/s13160-020-00419-x

    Article  MathSciNet  MATH  Google Scholar 

  35. Yasuda, M., Shimoyama, T., Kogure, J., Yokoyama, K., Koshiba, T.: Packed homomorphic encryption based on ideal lattices and its application to biometrics. In: Cuzzocrea, A., Kittl, C., Simos, D.E., Weippl, E., Xu, L. (eds.) CD-ARES 2013. LNCS, vol. 8128, pp. 55–74. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40588-4_5

    Chapter  MATH  Google Scholar 

  36. Yasuda, M., Shimoyama, T., Kogure, J., Yokoyama, K., Koshiba, T.: Practical packing method in somewhat homomorphic encryption. In: Garcia-Alfaro, J., Lioudakis, G., Cuppens-Boulahia, N., Foley, S., Fitzgerald, W.M. (eds.) DPM/SETOP -2013. LNCS, vol. 8247, pp. 34–50. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54568-9_3

    Chapter  MATH  Google Scholar 

  37. Zhou, K., Ren, J.: PassBio: privacy-preserving user-centric biometric authentication. IEEE Trans. Inf. Forensics Secur. 13, 3050–3063 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dongwoo Kim or Joohee Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cheon, J.H., Kim, D., Kim, D., Lee, J., Shin, J., Song, Y. (2021). Lattice-Based Secure Biometric Authentication for Hamming Distance. In: Baek, J., Ruj, S. (eds) Information Security and Privacy. ACISP 2021. Lecture Notes in Computer Science(), vol 13083. Springer, Cham. https://doi.org/10.1007/978-3-030-90567-5_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-90567-5_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-90566-8

  • Online ISBN: 978-3-030-90567-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics