Nothing Special   »   [go: up one dir, main page]

Skip to main content

Gaze Assisted Visual Grounding

  • Conference paper
  • First Online:
Social Robotics (ICSR 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13086))

Included in the following conference series:

Abstract

There has been an increasing demand for visual grounding in various human-robot interaction applications. However, the accuracy is often limited by the size of the dataset that can be collected, which is often a challenge. Hence, this paper proposes using the natural implicit input modality of human gaze to assist and improve the visual grounding accuracy of human instructions to robotic agents. To demonstrate the capability, mechanical gear objects are used. To achieve that, we utilized a transformer-based text classifier and a small corpus to develop a baseline phrase grounding model. We evaluate this phrase grounding system with and without gaze input to demonstrate the improvement. Gaze information (obtained from Microsoft Hololens2) improves the performance accuracy from 26% to 65%, leading to more efficient human-robot collaboration and applicable to hands-free scenarios. This approach is data-efficient as it requires only a small training dataset to ground the natural language referring expressions.

This research is supported by the Agency for Science, Technology and Research (A*STAR) under its AME Programmatic Funding Scheme (Project # A18A2b0046).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bhardwaj, R., Majumder, N., Poria, S., Hovy, E.: More identifiable yet equally performant transformers for text classification. arXiv preprint arXiv:2106.01269 (2021)

  2. Bloss, R.: Collaborative robots are rapidly providing major improvements in productivity, safety, programing ease, portability and cost while addressing many new applications. Ind. Robot Int. J. (2016)

    Google Scholar 

  3. Chen, L., Ma, W., Xiao, J., Zhang, H., Chang, S.F.: Ref-NMS: breaking proposal bottlenecks in two-stage referring expression grounding. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 1036–1044 (2021)

    Google Scholar 

  4. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)

  5. Everingham, M., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The pascal visual object classes (voc) challenge. Int. J. Comput. Vis. 88(2), 303–338 (2010). https://doi.org/10.1007/s11263-009-0275-4

    Article  Google Scholar 

  6. Johari, K., Karumpulli, N., Tan, U.X.: Complementing speech interaction design with touch for multi-robot systems. In: TENCON 2019–2019 IEEE Region 10 Conference (TENCON), pp. 1400–1405. IEEE (2019)

    Google Scholar 

  7. Kazemzadeh, S., Ordonez, V., Matten, M., Berg, T.: Referitgame: referring to objects in photographs of natural scenes. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 787–798 (2014)

    Google Scholar 

  8. Krawczyk, B.: Learning from imbalanced data: open challenges and future directions. Prog. Artif. Intell. 5(4), 221–232 (2016). https://doi.org/10.1007/s13748-016-0094-0

    Article  Google Scholar 

  9. Krishna, R., et al.: Visual genome: Connecting language and vision using crowdsourced dense image annotations. arXiv preprint arXiv:1602.07332 (2016)

  10. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014, Part V. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  11. Majaranta, P., Bulling, A.: Eye tracking and eye-based human–computer interaction. In: Fairclough, S.H., Gilleade, K. (eds.) Advances in Physiological Computing. HIS, pp. 39–65. Springer, London (2014). https://doi.org/10.1007/978-1-4471-6392-3_3

    Chapter  Google Scholar 

  12. Mao, J., Huang, J., Toshev, A., Camburu, O., Yuille, A.L., Murphy, K.: Generation and comprehension of unambiguous object descriptions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 11–20 (2016)

    Google Scholar 

  13. Palinko, O., Rea, F., Sandini, G., Sciutti, A.: Robot reading human gaze: why eye tracking is better than head tracking for human-robot collaboration. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5048–5054. IEEE (2016)

    Google Scholar 

  14. Park, K.B., Choi, S.H., Lee, J.Y., Ghasemi, Y., Mohammed, M., Jeong, H.: Hands-free human-robot interaction using multimodal gestures and deep learning in wearable mixed reality. IEEE Access 9, 55448–55464 (2021)

    Article  Google Scholar 

  15. Plummer, B.A., Wang, L., Cervantes, C.M., Caicedo, J.C., Hockenmaier, J., Lazebnik, S.: Flickr30k entities: collecting region-to-phrase correspondences for richer image-to-sentence models. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2641–2649 (2015)

    Google Scholar 

  16. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: Towards real-time object detection with region proposal networks. arXiv preprint arXiv:1506.01497 (2015)

  17. Sadhu, A., Chen, K., Nevatia, R.: Zero-shot grounding of objects from natural language queries. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4694–4703 (2019)

    Google Scholar 

  18. Scalise, R., Li, S., Admoni, H., Rosenthal, S., Srinivasa, S.S.: Natural language instructions for human-robot collaborative manipulation. Int. J. Robot. Res. 37(6), 558–565 (2018)

    Article  Google Scholar 

  19. Sharma, V.K., Murthy, L., Saluja, K.S., Mollyn, V., Sharma, G., Biswas, P.: Eye gaze controlled robotic arm for persons with ssmi. arXiv preprint arXiv:2005.11994 (2020)

  20. Shridhar, M., Mittal, D., Hsu, D.: Ingress: interactive visual grounding of referring expressions. Int. J. Robot. Res. 39(2–3), 217–232 (2020)

    Article  Google Scholar 

  21. Sidenmark, L., Mardanbegi, D., Gomez, A.R., Clarke, C., Gellersen, H.: Bimodalgaze: seamlessly refined pointing with gaze and filtered gestural head movement. In: ACM Symposium on Eye Tracking Research and Applications, pp. 1–9 (2020)

    Google Scholar 

  22. Stiefelhagen, R., Fugen, C., Gieselmann, R., Holzapfel, H., Nickel, K., Waibel, A.: Natural human-robot interaction using speech, head pose and gestures. In: 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No. 04CH37566), vol. 3, pp. 2422–2427. IEEE (2004)

    Google Scholar 

  23. Wang, M.Y., Kogkas, A.A., Darzi, A., Mylonas, G.P.: Free-view, 3D gaze-guided, assistive robotic system for activities of daily living. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2355–2361. IEEE (2018)

    Google Scholar 

  24. Wu, Y., Kirillov, A., Massa, F., Lo, W.Y., Girshick, R.: Detectron2 (2019). https://github.com/facebookresearch/detectron2

  25. Yang, Z., Gong, B., Wang, L., Huang, W., Yu, D., Luo, J.: A fast and accurate one-stage approach to visual grounding. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4683–4693 (2019)

    Google Scholar 

  26. Yu, L., et al.: Mattnet: modular attention network for referring expression comprehension. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1307–1315 (2018)

    Google Scholar 

  27. Zhou, Y., et al.: A real-time global inference network for one-stage referring expression comprehension. IEEE Trans. Neural Netw. Learn. Syst. (2021)

    Google Scholar 

  28. Zitnick, C.L., Dollár, P.: Edge boxes: locating object proposals from edges. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014, Part V. LNCS, vol. 8693, pp. 391–405. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_26

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kritika Johari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Johari, K., Tong, C.T.Z., Subbaraju, V., Kim, JJ., Tan, UX. (2021). Gaze Assisted Visual Grounding. In: Li, H., et al. Social Robotics. ICSR 2021. Lecture Notes in Computer Science(), vol 13086. Springer, Cham. https://doi.org/10.1007/978-3-030-90525-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-90525-5_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-90524-8

  • Online ISBN: 978-3-030-90525-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics