Abstract
We propose the first maliciously secure multi-party computation (MPC) protocol for general functionalities in two rounds, without any trusted setup. Since polynomial-time simulation is impossible in two rounds, we achieve the relaxed notion of superpolynomial-time simulation security [Pass, EUROCRYPT 2003]. Prior to our work, no such maliciously secure protocols were known even in the two-party setting for functionalities where both parties receive outputs. Our protocol is based on the sub-exponential security of standard assumptions plus a special type of non-interactive non-malleable commitment.
At the heart of our approach is a two-round multi-party conditional disclosure of secrets (MCDS) protocol in the plain model from bilinear maps, which is constructed from techniques introduced in [Benhamouda and Lin, TCC 2020].
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Running two instances of the same protocol in parallel does not achieve any meaningful security guarantee since nothing prevents one party from using two different inputs in each session.
- 2.
We note that our usage of bilinear group based NIWI does not require any setup phase as the prover can self sample the group. Soundness of NIWI will hold as long as the group is cyclic and of the right order[GOS06b]. Also, our usage of tag-based non-malleable commitment scheme doesn’t require setup as the parties can locally choose their identities.
- 3.
Specifically, we assume (a strengthened form of) sub-exponentially secure non-malleable commitments with respect to commitment.
- 4.
Semi-malicious security is a strengthening of semi-honest security where the adversary follows the specifications of the protocols but can choose the random coins of the corrupted parties arbitrarily.
- 5.
This is needed, for example, to ensure that the hybrid before switching to trapdoor is indistinguishable from the hybrid obtained after switching to trapdoor w.r.t an adversary who was unable to retrieve the Round 2 semi-malicious MPC message in the former hybrid (because of some dishonest behavior in the Round 1). We would like to avoid a scenario where such an adversary is actively trying to maul the honest party’s \(C_i^H\) into its own \(C_i^M\) and therefore distinguishes the latter hybrid from the former one (by successfully retrieving the Round 2 MPC message in the latter but not the former).
References
Ananth, P., Choudhuri, A.R., Jain, A.: A new approach to round-optimal secure multiparty computation. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 468–499. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63688-7_16
Applebaum, B., Ishai, Y., Kushilevitz, E.: Cryptography in NC\(^0\). In: 45th FOCS, pp. 166–175. IEEE Computer Society Press, October 2004
Applebaum, B., Ishai, Y., Kushilevitz, E.: Computationally private randomizing polynomials and their applications (extended abstract). In: 20th Annual IEEE Conference on Computational Complexity (CCC’05), pp. 260–274 (2005)
Ananth, P., Jain, A., Jin, Z., Malavolta, G.: Multikey fhe in the plain model. IACR ePrint Arch. 2020, 180 (2020)
Badrinarayanan, S., Garg, S., Ishai, Y., Sahai, A., Wadia, A.: Two-message witness indistinguishability and secure computation in the plain model from new assumptions. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10626, pp. 275–303. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70700-6_10
Badrinarayanan, S., Goyal, V., Jain, A., Khurana, D., Sahai, A.: Round optimal concurrent MPC via strong simulation. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10677, pp. 743–775. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70500-2_25
Badrinarayanan, S., Goyal, V., Jain, A., Kalai, Y.T., Khurana, D., Sahai, A.: Promise zero knowledge and its applications to round optimal MPC. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10992, pp. 459–487. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0_16
Bartusek, J., Garg, S., Masny, D., Mukherjee, P.: Reusable two-round mpc from ddh. Cryptology ePrint Archive, Report 2020/170 (2020)
Brakerski, Z., Halevi, S., Polychroniadou, A.: Four round secure computation without setup. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10677, pp. 645–677. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70500-2_22
Bellare, M., Hoang, V.T., Rogaway, P.: Foundations of garbled circuits. In: Yu, T., Danezis, G., Gligor, V.D., (eds.) ACM CCS 2012, pp. 784–796. ACM Press, October 2012
Benhamouda, F., Jain, A., Komargodski, I., Lin, H.: Multiparty reusable non-interactive secure computation from LWE. In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT 2021. LNCS, vol. 12697, pp. 724–753. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77886-6_25
Benhamouda, F., Lin, H.: k-round multiparty computation from k-round oblivious transfer via garbled interactive circuits. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10821, pp. 500–532. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78375-8_17
Bitansky, N., Lin, H.: One-message zero knowledge and non-malleable commitments. In: Beimel, A., Dziembowski, S. (eds.) TCC 2018. LNCS, vol. 11239, pp. 209–234. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03807-6_8
Benhamouda, F., Lin, H.: Multiparty reusable non-interactive secure computation. Cryptology ePrint Archive, Report 2020/221 (2020)
Banerjee, A., Peikert, C.: New and improved key-homomorphic pseudorandom functions. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 353–370. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44371-2_20
Choudhuri, A.R., Ciampi, M., Goyal, V., Jain, A., Ostrovsky, R.: Round optimal secure multiparty computation from minimal assumptions. Cryptology ePrint Archive, Report 2019/216 (2019)
Garg, S., Gupta, D.: Efficient round optimal blind signatures. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 477–495. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5_27
Garg, S., Gentry, C., Halevi, S., Raykova, M.: Two-round secure MPC from indistinguishability obfuscation. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 74–94. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54242-8_4
Gentry, C., Groth, J., Ishai, Y., Peikert, C., Sahai, A., Smith, A.D.: Using fully homomorphic hybrid encryption to minimize non-interative zero-knowledge proofs. J. Cryptology 28(4), 820–843 (2015)
Gertner, Y., Ishai, Y., Kushilevitz, E., Malkin, T.: Protecting data privacy in private information retrieval schemes. In: 30th ACM STOC, pp. 151–160. ACM Press, May 1998
Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a completeness theorem for protocols with honest majority. In: Aho, A. (ed.) 19th ACM STOC, pp. 218–229. ACM Press, May 1987
Goldreich, O., Oren, Y.: Definitions and properties of zero-knowledge proof systems. J. Cryptol. 7(1), 1–32 (1994). https://doi.org/10.1007/BF00195207
Groth, J., Ostrovsky, R., Sahai, A.: Non-interactive zaps and new techniques for NIZK. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 97–111. Springer, Heidelberg (2006). https://doi.org/10.1007/11818175_6
Groth, J., Ostrovsky, R., Sahai, A.: Perfect non-interactive zero knowledge for NP. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 339–358. Springer, Heidelberg (2006). https://doi.org/10.1007/11761679_21
Garg, S., Polychroniadou, A.: Two-round adaptively secure MPC from indistinguishability obfuscation. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 614–637. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46497-7_24
Garg, S., Rao, V., Sahai, A., Schröder, D., Unruh, D.: Round optimal blind signatures. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 630–648. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-9_36
Garg, S., Srinivasan, A.: Two-round multiparty secure computation from minimal assumptions. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10821, pp. 468–499. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78375-8_16
Halevi, S., Hazay, C., Polychroniadou, A., Venkitasubramaniam, M.: Round-optimal secure multi-party computation. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10992, pp. 488–520. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0_17
Jain, A., Kalai, Y.T., Khurana, D., Rothblum, R.: Distinguisher-dependent simulation in two rounds and its applications. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10402, pp. 158–189. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63715-0_6
Kalai, Y.T., Khurana, D.: Non-interactive non-malleability from quantum supremacy. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11694, pp. 552–582. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26954-8_18
Katz, J., Ostrovsky, R.: Round-optimal secure two-party computation. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 335–354. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28628-8_21
Lindell, Y., Pinkas, B.: A proof of security of Yao’s protocol for two-party computation. J. Cryptology 22(2), 161–188 (2009)
Lin, H., Pass, R., Soni, P.: Two-round and non-interactive concurrent non-malleable commitments from time-lock puzzles. In: 2017 IEEE 58th Annual Symposium (FOCS), pp. 576–587 (2017)
Morgan, A., Pass, R., Polychroniadou, A.: Succinct non-interactive secure computation. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12106, pp. 216–245. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45724-2_8
Naor, M., Reingold, O.: Number-theoretic constructions of efficient pseudo-random functions. In: 38th FOCS, pp. 458–467. IEEE Computer Society Press, October 1997
Pass, R.: Simulation in quasi-polynomial time, and its application to protocol composition. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 160–176. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9_10
Pandey, O., Pass, R., Vaikuntanathan, V.: Adaptive one-way functions and applications. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 57–74. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-5_4
Prabhakaran, M., Sahai, A.: New notions of security: achieving universal composability without trusted setup. In: Babai, L., (ed.) 36th ACM STOC, pp. 242–251. ACM Press, June 2004
Yao, A.C.-C.: How to generate and exchange secrets (extended abstract). In: 27th FOCS, pp. 162–167. IEEE Computer Society Press, October 1986
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 International Association for Cryptologic Research
About this paper
Cite this paper
Agarwal, A., Bartusek, J., Goyal, V., Khurana, D., Malavolta, G. (2021). Two-Round Maliciously Secure Computation with Super-Polynomial Simulation. In: Nissim, K., Waters, B. (eds) Theory of Cryptography. TCC 2021. Lecture Notes in Computer Science(), vol 13042. Springer, Cham. https://doi.org/10.1007/978-3-030-90459-3_22
Download citation
DOI: https://doi.org/10.1007/978-3-030-90459-3_22
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-90458-6
Online ISBN: 978-3-030-90459-3
eBook Packages: Computer ScienceComputer Science (R0)