Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Data Mining Approach to Guide the Physical Design of Distributed Big Data Warehouses

  • Chapter
  • First Online:
Advances in Knowledge Discovery and Management

Part of the book series: Studies in Computational Intelligence ((SCI,volume 1004))

Abstract

Improving OLAP query performance in a distributed system such as Hadoop and Spark is a challenging task. An OLAP query is composed of several operations, such as projection, filtering, join, and grouping. The star join operation is the most expensive one and usually involve considerable communication cost. The common method used to decrease the network traffic for the star join operation is to co-partition some tables of a data warehouse on their join key. However, this operation still requires many MapReduce cycles in existing data warehouses partitioning schemes. In this paper, we propose a new physical design of distributed big data warehouses over Hadoop cluster. We propose two methods called “FKey” and “NewKey” based on a data mining technique to guide our physical design. Our partitioning and distribution scheme helps the query’s optimizer to make a good query processing plan, such it can performing the star join operation in only one Spark stage without the shuffle phase. To evaluate our approach we have done some experiments on a cluster of data nodes using the TPC-DS benchmark. The results show that our proposal outperforms the existing approaches in terms of query runtime.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    \(MSE=\sum _{j=1}^k\sum _{X_i\in C_j} \frac{\Vert X_i-C_j\Vert ^{2}}{n}\), Where \(X_i\) denotes data point locations, i.e. tuples or vectors of the matrix MB, \(C_j\) denotes centroid locations, and \(n=|MB|\).

  2. 2.

    available from the site https://github.com/databricks/spark-sql-perf.

References

  • Abouzeid, A., Bajda-Pawlikowski, K., Abadi, D., Silberschatz, A., & Rasin, A. (2009). Hadoopdb: An architectural hybrid of mapreduce and dbms technologies for analytical workloads. Proceedings of the VLDB Endowment, 2(1), 922–933.

    Article  Google Scholar 

  • Afrati, F. N., & Ullman, J. D. (2011). Optimizing multiway joins in a map-reduce environment. IEEE Transactions on Knowledge and Data Engineering, 23(9), 1282–1298.

    Article  Google Scholar 

  • Arres, B., Kabachi, N., & Boussaid, O. (2015). Optimizing olap cubes construction by improving data placement on multi-nodes clusters. In 2015 23rd Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP) (pp. 520–524). IEEE.

    Google Scholar 

  • Azez, H., Khafagy, M. H., & Omara, F. A. (2015). Joum: An indexing methodology for improving join in hive star schema. International Journal of Scientific and Engineering Research, 6, 111–119.

    Google Scholar 

  • Blanas, S., Patel, J. M., Ercegovac, V., Rao, J., Shekita, E. J., & Tian, Y. (2010). A comparison of join algorithms for log processing in mapreduce. In Proceedings of the 2010 ACM SIGMOD International Conference on Management of Data (pp. 975–986). ACM.

    Google Scholar 

  • Brito, J. J., Mosqueiro, T., Ciferri, R. R., & de Aguiar Ciferri, C. D. (2016). Faster cloud star joins with reduced disk spill and network communication. Procedia Computer Science, 80, 74–85.

    Article  Google Scholar 

  • Dittrich, J., Quiané-Ruiz, J.-A., Jindal, A., Kargin, Y., Setty, V., & Schad, J. (2010). Hadoop++: Making a yellow elephant run like a cheetah. Proceedings of the VLDB Endowment, 3(1–2), 515–529.

    Article  Google Scholar 

  • Eltabakh, M. Y., Tian, Y., Özcan, F., Gemulla, R., Krettek, A., & McPherson, J. (2011). Cohadoop: Flexible data placement and its exploitation in hadoop. Proceedings of the VLDB Endowment, 4(9), 575–585.

    Article  Google Scholar 

  • Field, A. (2013). Discovering Statistics Using IBM SPSS Statistics. California: Sage.

    Google Scholar 

  • Golfarelli, M., & Baldacci, L. (2018). A cost model for spark sql. IEEE Transactions on Knowledge and Data Engineering.

    Google Scholar 

  • Gravetter, F. J., & Wallnau, L. B. (2016). Statistics for the Behavioral Sciences. Cengage Learning.

    Google Scholar 

  • Lu, Y., Shanbhag, A., Jindal, A., & Madden, S. (2017). Adaptdb: Adaptive partitioning for distributed joins. Proceedings of the VLDB Endowment, 10(5), 589–600.

    Article  Google Scholar 

  • Malinen, M. I., & Fränti, P. (2014). Balanced k-means for clustering. In Joint IAPR International Workshops on Statistical Techniques in Pattern Recognition (SPR) and Structural and Syntactic Pattern Recognition (SSPR) (pp. 32–41). Springer.

    Google Scholar 

  • Petridis, P., Gounaris, A., & Torres, J. (2016). Spark parameter tuning via trial-and-error. In INNS Conference on Big Data (pp. 226–237). Springer.

    Google Scholar 

  • Purdilă, V., & Pentiuc, Ş-G. (2016). Single-scan: A fast star-join query processing algorithm. Practice and Experience, 46(3), 319–339.

    Article  Google Scholar 

  • Ramdane, Y., Boussaid, O., Kabachi, N., & Bentayeb, F. (2018). Partitioning and bucketing techniques to speed up query processing in spark-sql. In 2018 IEEE 24th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 142–151). IEEE.

    Google Scholar 

  • Ramdane, Y., Omar, B., Nadia, K., & Fadila, B. (2019). Conception physique d’un entrepôt de données distribuées basée sur k-means équilibré. In EGC (pp. 177–188).

    Google Scholar 

  • Sun, L., Franklin, M. J., Krishnan, S., & Xin, R. S. (2014). Fine-grained partitioning for aggressive data skipping. In Proceedings of the 2014 ACM SIGMOD International Conference on Management of Data (pp. 1115–1126). ACM.

    Google Scholar 

  • Tang, Z., Zhang, X., Li, K., & Li, K. (2018). An intermediate data placement algorithm for load balancing in spark computing environment. Future Generation Computer Systems, 78, 287–301.

    Article  Google Scholar 

  • Zamanian, E., Binnig, C., & Salama, A. (2015). Locality-aware partitioning in parallel database systems. In Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data (pp. 17–30). ACM.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yassine Ramdane .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ramdane, Y., Kabachi, N., Boussaid, O., Bentayeb, F. (2022). A Data Mining Approach to Guide the Physical Design of Distributed Big Data Warehouses. In: Jaziri, R., Martin, A., Rousset, MC., Boudjeloud-Assala, L., Guillet, F. (eds) Advances in Knowledge Discovery and Management. Studies in Computational Intelligence, vol 1004. Springer, Cham. https://doi.org/10.1007/978-3-030-90287-2_6

Download citation

Publish with us

Policies and ethics