Abstract
Looking for the improvement of the classification, we propose a hybrid algorithm to identify the corn plant and the weed. With the aim of improving the fertilization and herbicide application processes. An efficient process can avoid wasted fertilizers and decrease subsoil contamination. The purpose is to identify the corn plant to specify the fertilizer application in an automated and precise way. Whereas, the identification of the weed allows to apply herbicides directly. In this work we propose a hybrid method with Convolutional Neural Networks (CNN) to extract characteristics from images and Vector Support Machines (SVM) for classification. We obtained effectiveness results, a percentage of 98%, being higher than those compared to the state of the art.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
INEGI: Gobierno de México. Encuesta Nacional Agropecuaria 2019. “Superficie cultivada y producción de cultivos anuales y perennes por cultivo seleccionado” (2019)
Barkin, D.: El maíz: la persistencia de una cultura en México. Cahiers des Amériques latines 40, 19–32 (2002)
Gómez, et al.: Clasificación de plantas de maíz y maleza: hacía la mejora de la fertilización en México. Res. Comput. Sci. 149(8), 683–697 (2020)
Sa, I., et al.: weedNet: dense semantic weed classification using multispectral images and MAV for smart farming. IEEE Robot. Automat. Lett. 3, 588–595 (2018)
Olsen, A., et al.: Deepweeds: a multiclass weed species image dataset for deep learning. Sci. Rep. 9, 2058 (2019)
Chollet, F.: Deep Learning with Python: Fundamentals of Machine Learning. Manning Publications Co., Shelter Island, NY (2018). ISBN 9781617294433
Juraszek, G.: Reconhecimento de Produtos por Imagem Utilizando Palavras Visuais e Redes Neurais Convolucionais. UDESC, Joinville (2014)
LeCun, Y., Kavukcuoglu, K., Farabet, C.: Convolutional networks and applications in vision. In: Proceedings of 2010 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 253–256. IEEE (2010). https://doi.org/10.1109/ISCAS.2010.5537907
Arel, I., Rose, D., Karnowski, T.: Deep machine learning - a new frontier in artificial intelligence research [research frontier]. IEEE Comput. Intell. Mag. 5(4), 13–18 (2010). https://doi.org/10.1109/MCI.2010.938364
Tchangani, A.: Support vector machines: a tool for pattern recognition and classification. Stud. Inf. Control J. 14(2), 99–109 (2005)
Silva, C., Welfer, D., Gioda, F.P., Dornelles, C.: Cattle brand recognition using convolutional neural network and support vector machines. IEEE Latin Am. Trans. 15(2), 310–316 (2017). https://doi.org/10.1109/TLA.2017.7854627
Silva, C., Welfer, D.: A novel hybrid SVM-CNN method for extracting characteristics and classifying cattle branding. Latin Am. J. Comput. LAJC VI(1), 9–15 (2019)
Niu, X.X., Suen, C.Y.: A novel hybrid CNN-SVM classifier for recognizing handwritten digits. Pattern Recognit. 45, 1318–1325 (2011). https://doi.org/10.1016/j.patcog.2011.09.021
Agarap, A.F.M.: An Architecture Combining Convolutional Neural Network (CNN) and Support Vector Machine (SVM) for Image Classification (2017)
Basly, H., Ouarda, W., Sayadi, F.E., Ouni, B., Alimi, A.M.: CNN-SVM learning approach based human activity recognition. In: El Moataz, A., Mammass, D., Mansouri, A., Nouboud, F. (eds.) ICISP 2020. LNCS, vol. 12119, pp. 271–281. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-51935-3_29
Constante, P., Gordon, A., Chang, O., Pruna, E., Acuna, F., Escobar, I.: Artificial vision techniques for strawberry’s industrial classification. IEEE Latin Am. Trans. 14(6), 2576–2581 (2016). https://doi.org/10.1109/TLA.2016.7555221
Garcia, F., Cervantes, J., Lopez, A., Alvarado, M.: Fruit classification by extracting color chromaticity, shape and texture features: towards an application for supermarkets. IEEE Latin Am. Trans. 14(7), 3434–3443 (2016). https://doi.org/10.1109/tla.2016.7587652
Cervantes, J., Garcia Lamont, F., Rodriguez Mazahua, L., Zarco Hidalgo, A., Ruiz Castilla, J.S.: Complex identification of plants from leaves. In: Huang, D.-S., Gromiha, M.M., Han, K., Hussain, A. (eds.) ICIC 2018, Part III. LNCS (LNAI), vol. 10956, pp. 376–387. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-95957-3_41
Yang, C.C., Prasher, S.O., Landry, J.A., Ramaswamy, H.S., et al.: Application of artificial neural networks in image recognition and classification of crop and weeds, 147–152 (2000)
Barufaldi, J.M.: Redes neuronales adversarias para el reconocimiento de malezas. Tesis. Facultad de Ciencias Exactas, Ingeniera y Agrimensura. Universidad Nacional de Rosario, Argentina, pp. 47–61 (2016)
Haug, S., Andreas, M., Biber, P., Ostermann, J.: Plant classification system for crop/weed discrimination without segmentation. In IEEE Winter Conference on Applications of Computer Vision, pp. 1142–1149 (2014)
Hlaing, S.H., Khaing, A.S.: Weed and crop segmentation and classification using area thresholding. IJRET 3, 375–382 (2014)
Amaro, E.G., Canales, J.C., Cabrera, J.E., Castilla, J.S.R., Lamont, F.G.: Identification of diseases and pests in tomato plants through artificial vision. In: Huang, D.-S., Premaratne, P. (eds.) ICIC 2020, Part III. LNCS (LNAI), vol. 12465, pp. 98–109. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60796-8_9
Lanlan, W., Youxian, W.: Weed corn seedling recognition by support vector machine using texture features. African J. Agricu. Res. 4(9), 840–846 (2009)
Campos, Y., Sossa, H., Pajares, G.: Comparative analysis of texture descriptors in maize fields with plants, soil and object discrimination. Precision Agric. 18(5), 717–735 (2016). https://doi.org/10.1007/s11119-016-9483-4
Jiang, H., Zhang, C., Qiao, Y., Zhang, Z., Zhang, W., Song, C.: CNN feature based graph convolutional network for weed and crop recognition in smart farming. Comput. Electron. Agricu. 174, 105450 (2020). https://doi.org/10.1016/j.compag.2020.105450. ISSN 0168-1699
Li, Y., Nie, J., Chao, X.: Do we really need deep CNN for plant diseases identification? Comput. Electron. Agric. 178, 105803 ( (2020). https://doi.org/10.1016/j.compag.2020.105803. ISSN 0168-1699
LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)
Ahila Priyadharshini, R., Arivazhagan, S., Arun, M., Mirnalini, A.: Maize leaf disease classification using deep convolutional neural networks. Neural Comput. Appl. 31(12), 8887–8895 (2019). https://doi.org/10.1007/s00521-019-04228-3
Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995). https://doi.org/10.1007/BF00994018
Qiao, Y., Cappelle, C., Ruichek, Y., Yang, T.: ConvNet and LSH-based visual localization using localized sequence matching. Sensors 19(11), 2439 (2019). https://doi.org/10.3390/s19112439
Sibiya, M., Sumbwanyambe, M.: A computational procedure for the recognition and classification of maize leaf diseases out of healthy leaves using convolutional neural networks. AgriEngineering 2019(1), 119–131 (2019). https://doi.org/10.3390/agriengineering1010009
Zhang, X., Qiao, Y., Meng, F., Fan, C., Zhang, M.: Identification of maize leaf diseases using improved deep convolutional neural networks. IEEE Access 6, 30370–30377 (2018). https://doi.org/10.1109/ACCESS.2018.2844405
Puente-Maury, L., et al.: Método rápido de preprocesamiento para clasificación en conjuntos de datos no balanceados. Res. Comput. Sci. 73, 129–142 (2014)
Alom, M.Z., Hasan, M., Yakopcic, C., Taha, T.M., Asari, V.K.: Improved inception-residual convolutional neural network for object recognition. Neural Comput. Appl. 32(1), 279–293 (2018). https://doi.org/10.1007/s00521-018-3627-6
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Ramos, M.Y.G., Castilla, J.S.R., Lamont, F.G. (2021). Hybrid Algorithm of Convolutional Neural Networks and Vector Support Machines in Classification. In: Guarda, T., Portela, F., Santos, M.F. (eds) Advanced Research in Technologies, Information, Innovation and Sustainability. ARTIIS 2021. Communications in Computer and Information Science, vol 1485. Springer, Cham. https://doi.org/10.1007/978-3-030-90241-4_21
Download citation
DOI: https://doi.org/10.1007/978-3-030-90241-4_21
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-90240-7
Online ISBN: 978-3-030-90241-4
eBook Packages: Computer ScienceComputer Science (R0)