Nothing Special   »   [go: up one dir, main page]

Skip to main content

Hybrid Algorithm of Convolutional Neural Networks and Vector Support Machines in Classification

  • Conference paper
  • First Online:
Advanced Research in Technologies, Information, Innovation and Sustainability (ARTIIS 2021)

Abstract

Looking for the improvement of the classification, we propose a hybrid algorithm to identify the corn plant and the weed. With the aim of improving the fertilization and herbicide application processes. An efficient process can avoid wasted fertilizers and decrease subsoil contamination. The purpose is to identify the corn plant to specify the fertilizer application in an automated and precise way. Whereas, the identification of the weed allows to apply herbicides directly. In this work we propose a hybrid method with Convolutional Neural Networks (CNN) to extract characteristics from images and Vector Support Machines (SVM) for classification. We obtained effectiveness results, a percentage of 98%, being higher than those compared to the state of the art.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. INEGI: Gobierno de México. Encuesta Nacional Agropecuaria 2019. “Superficie cultivada y producción de cultivos anuales y perennes por cultivo seleccionado” (2019)

    Google Scholar 

  2. Barkin, D.: El maíz: la persistencia de una cultura en México. Cahiers des Amériques latines 40, 19–32 (2002)

    Article  Google Scholar 

  3. Gómez, et al.: Clasificación de plantas de maíz y maleza: hacía la mejora de la fertilización en México. Res. Comput. Sci. 149(8), 683–697 (2020)

    Google Scholar 

  4. Sa, I., et al.: weedNet: dense semantic weed classification using multispectral images and MAV for smart farming. IEEE Robot. Automat. Lett. 3, 588–595 (2018)

    Article  Google Scholar 

  5. Olsen, A., et al.: Deepweeds: a multiclass weed species image dataset for deep learning. Sci. Rep. 9, 2058 (2019)

    Article  Google Scholar 

  6. Chollet, F.: Deep Learning with Python: Fundamentals of Machine Learning. Manning Publications Co., Shelter Island, NY (2018). ISBN 9781617294433

    Google Scholar 

  7. Juraszek, G.: Reconhecimento de Produtos por Imagem Utilizando Palavras Visuais e Redes Neurais Convolucionais. UDESC, Joinville (2014)

    Google Scholar 

  8. LeCun, Y., Kavukcuoglu, K., Farabet, C.: Convolutional networks and applications in vision. In: Proceedings of 2010 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 253–256. IEEE (2010). https://doi.org/10.1109/ISCAS.2010.5537907

  9. Arel, I., Rose, D., Karnowski, T.: Deep machine learning - a new frontier in artificial intelligence research [research frontier]. IEEE Comput. Intell. Mag. 5(4), 13–18 (2010). https://doi.org/10.1109/MCI.2010.938364

    Article  Google Scholar 

  10. Tchangani, A.: Support vector machines: a tool for pattern recognition and classification. Stud. Inf. Control J. 14(2), 99–109 (2005)

    Google Scholar 

  11. Silva, C., Welfer, D., Gioda, F.P., Dornelles, C.: Cattle brand recognition using convolutional neural network and support vector machines. IEEE Latin Am. Trans. 15(2), 310–316 (2017). https://doi.org/10.1109/TLA.2017.7854627

    Article  Google Scholar 

  12. Silva, C., Welfer, D.: A novel hybrid SVM-CNN method for extracting characteristics and classifying cattle branding. Latin Am. J. Comput. LAJC VI(1), 9–15 (2019)

    Google Scholar 

  13. Niu, X.X., Suen, C.Y.: A novel hybrid CNN-SVM classifier for recognizing handwritten digits. Pattern Recognit. 45, 1318–1325 (2011). https://doi.org/10.1016/j.patcog.2011.09.021

    Article  Google Scholar 

  14. Agarap, A.F.M.: An Architecture Combining Convolutional Neural Network (CNN) and Support Vector Machine (SVM) for Image Classification (2017)

    Google Scholar 

  15. Basly, H., Ouarda, W., Sayadi, F.E., Ouni, B., Alimi, A.M.: CNN-SVM learning approach based human activity recognition. In: El Moataz, A., Mammass, D., Mansouri, A., Nouboud, F. (eds.) ICISP 2020. LNCS, vol. 12119, pp. 271–281. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-51935-3_29

    Chapter  Google Scholar 

  16. Constante, P., Gordon, A., Chang, O., Pruna, E., Acuna, F., Escobar, I.: Artificial vision techniques for strawberry’s industrial classification. IEEE Latin Am. Trans. 14(6), 2576–2581 (2016). https://doi.org/10.1109/TLA.2016.7555221

    Article  Google Scholar 

  17. Garcia, F., Cervantes, J., Lopez, A., Alvarado, M.: Fruit classification by extracting color chromaticity, shape and texture features: towards an application for supermarkets. IEEE Latin Am. Trans. 14(7), 3434–3443 (2016). https://doi.org/10.1109/tla.2016.7587652

    Article  Google Scholar 

  18. Cervantes, J., Garcia Lamont, F., Rodriguez Mazahua, L., Zarco Hidalgo, A., Ruiz Castilla, J.S.: Complex identification of plants from leaves. In: Huang, D.-S., Gromiha, M.M., Han, K., Hussain, A. (eds.) ICIC 2018, Part III. LNCS (LNAI), vol. 10956, pp. 376–387. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-95957-3_41

    Chapter  Google Scholar 

  19. Yang, C.C., Prasher, S.O., Landry, J.A., Ramaswamy, H.S., et al.: Application of artificial neural networks in image recognition and classification of crop and weeds, 147–152 (2000)

    Google Scholar 

  20. Barufaldi, J.M.: Redes neuronales adversarias para el reconocimiento de malezas. Tesis. Facultad de Ciencias Exactas, Ingeniera y Agrimensura. Universidad Nacional de Rosario, Argentina, pp. 47–61 (2016)

    Google Scholar 

  21. Haug, S., Andreas, M., Biber, P., Ostermann, J.: Plant classification system for crop/weed discrimination without segmentation. In IEEE Winter Conference on Applications of Computer Vision, pp. 1142–1149 (2014)

    Google Scholar 

  22. Hlaing, S.H., Khaing, A.S.: Weed and crop segmentation and classification using area thresholding. IJRET 3, 375–382 (2014)

    Google Scholar 

  23. Amaro, E.G., Canales, J.C., Cabrera, J.E., Castilla, J.S.R., Lamont, F.G.: Identification of diseases and pests in tomato plants through artificial vision. In: Huang, D.-S., Premaratne, P. (eds.) ICIC 2020, Part III. LNCS (LNAI), vol. 12465, pp. 98–109. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60796-8_9

    Chapter  Google Scholar 

  24. Lanlan, W., Youxian, W.: Weed corn seedling recognition by support vector machine using texture features. African J. Agricu. Res. 4(9), 840–846 (2009)

    Google Scholar 

  25. Campos, Y., Sossa, H., Pajares, G.: Comparative analysis of texture descriptors in maize fields with plants, soil and object discrimination. Precision Agric. 18(5), 717–735 (2016). https://doi.org/10.1007/s11119-016-9483-4

    Article  Google Scholar 

  26. Jiang, H., Zhang, C., Qiao, Y., Zhang, Z., Zhang, W., Song, C.: CNN feature based graph convolutional network for weed and crop recognition in smart farming. Comput. Electron. Agricu. 174, 105450 (2020). https://doi.org/10.1016/j.compag.2020.105450. ISSN 0168-1699

    Article  Google Scholar 

  27. Li, Y., Nie, J., Chao, X.: Do we really need deep CNN for plant diseases identification? Comput. Electron. Agric. 178, 105803 ( (2020). https://doi.org/10.1016/j.compag.2020.105803. ISSN 0168-1699

    Article  Google Scholar 

  28. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  29. Ahila Priyadharshini, R., Arivazhagan, S., Arun, M., Mirnalini, A.: Maize leaf disease classification using deep convolutional neural networks. Neural Comput. Appl. 31(12), 8887–8895 (2019). https://doi.org/10.1007/s00521-019-04228-3

    Article  Google Scholar 

  30. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995). https://doi.org/10.1007/BF00994018

    Article  MATH  Google Scholar 

  31. Qiao, Y., Cappelle, C., Ruichek, Y., Yang, T.: ConvNet and LSH-based visual localization using localized sequence matching. Sensors 19(11), 2439 (2019). https://doi.org/10.3390/s19112439

    Article  Google Scholar 

  32. Sibiya, M., Sumbwanyambe, M.: A computational procedure for the recognition and classification of maize leaf diseases out of healthy leaves using convolutional neural networks. AgriEngineering 2019(1), 119–131 (2019). https://doi.org/10.3390/agriengineering1010009

    Article  Google Scholar 

  33. Zhang, X., Qiao, Y., Meng, F., Fan, C., Zhang, M.: Identification of maize leaf diseases using improved deep convolutional neural networks. IEEE Access 6, 30370–30377 (2018). https://doi.org/10.1109/ACCESS.2018.2844405

    Article  Google Scholar 

  34. Puente-Maury, L., et al.: Método rápido de preprocesamiento para clasificación en conjuntos de datos no balanceados. Res. Comput. Sci. 73, 129–142 (2014)

    Article  Google Scholar 

  35. Alom, M.Z., Hasan, M., Yakopcic, C., Taha, T.M., Asari, V.K.: Improved inception-residual convolutional neural network for object recognition. Neural Comput. Appl. 32(1), 279–293 (2018). https://doi.org/10.1007/s00521-018-3627-6

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcos Yamir Gómez Ramos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ramos, M.Y.G., Castilla, J.S.R., Lamont, F.G. (2021). Hybrid Algorithm of Convolutional Neural Networks and Vector Support Machines in Classification. In: Guarda, T., Portela, F., Santos, M.F. (eds) Advanced Research in Technologies, Information, Innovation and Sustainability. ARTIIS 2021. Communications in Computer and Information Science, vol 1485. Springer, Cham. https://doi.org/10.1007/978-3-030-90241-4_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-90241-4_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-90240-7

  • Online ISBN: 978-3-030-90241-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics