Nothing Special   »   [go: up one dir, main page]

Skip to main content

An Experimental Analysis of Face Anti-spoofing Strategies for Real Time Applications

  • Conference paper
  • First Online:
HCI International 2021 - Late Breaking Posters (HCII 2021)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1499))

Included in the following conference series:

  • 2080 Accesses

Abstract

Face spoofing is an attack attempt to obtain unauthorized access by using photos, videos, or 3D maps of a user’s face. The development of anti-spoofing strategies evolves at the same time as facial authentication technologies. Many methods for preventing such attacks have been proposed recently [1,2,3], showing excellent results accuracy in fraud detection. However, most of these methods are very efficient in detecting patterns—such as fraud—present a major disadvantage: a high computational cost. This cost directly impacts the user experience of the facial authentication system, since the spoofing verification adds an extra layer of inference by artificial intelligence models, causing a longer waiting time for the authentication system’s user. This impact is most noted when the inference is performed on devices with limited computational power, such as mobile, tablets, and edge devices. In this work, we carry out an experimental analysis of the common anti-spoofing strategies considering the trade-off between correctness fraud detection and computational cost, aimed at optimizing the user experience. We also propose to use a fine-tuned Convolutional Neural Network (CNN) with a base network trained on a larger dataset and adds to our analysis.

Supported by Sidia Institute of Science and Technology, and Samsung Eletrônica da Amazônia Ltda, under the auspice of the Brazilian informatics law no 8.387/91.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Khurshid, A., Tamayo, S.C., Fernandes, E., Gadelha, M.R., Teofilo, M.: A robust and real-time face anti-spoofing method based on texture feature analysis. In: Stephanidis, C. (ed.) HCII 2019. LNCS, vol. 11786, pp. 484–496. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30033-3_37

    Chapter  Google Scholar 

  2. Sengur, A., Akhtar, Z., Akbulut, Y., Ekici, S., Budak, U.: Deep feature extraction for face liveness detection. In: 2018 International Conference on Artificial Intelligence and Data Processing (IDAP), pp. 1–4, September 2018

    Google Scholar 

  3. Kim, W., Suh, S., Han, J.: Face liveness detection from a single image via diffusion speed model. IEEE Trans. Image Process. 24(8), 2456–2465 (2015)

    Article  MathSciNet  Google Scholar 

  4. Galbally, J., Marcel, S., Fierrez, J.: Image quality assessment for fake biometric detection: application to iris, fingerprint, and face recognition. IEEE Trans. Image Process. 23(2), 710–724 (2014)

    Article  MathSciNet  Google Scholar 

  5. Boulkenafet, Z., Komulainen, J., Hadid, A.: Face spoofing detection using colour texture analysis. IEEE Trans. Inf. Forensics Secur. 11(8), 1818–1830 (2016)

    Article  Google Scholar 

  6. Khurshid, A., Scharcanski, J.: Incremental multi-model dictionary learning for face tracking. In: 2018 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), pp. 1–6, May 2018

    Google Scholar 

  7. Omidyeganeh, M., et al.: Yawning detection using embedded smart cameras. IEEE Trans. Instrum. Meas. 65(3), 570–582 (2016)

    Article  Google Scholar 

  8. Tan, X., Li, Y., Liu, J., Jiang, L.: Face liveness detection from a single image with sparse low rank bilinear discriminative model. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6316, pp. 504–517. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15567-3_37

    Chapter  Google Scholar 

  9. Chingovska, I., Anjos, A., Marcel, S.: On the effectiveness of local binary patterns in face anti-spoofing. In: 2012 BIOSIG-Proceedings of the International Conference of Biometrics Special Interest Group (BIOSIG), pp. 1–7. IEEE (2012)

    Google Scholar 

  10. Li, J., Wang, Y., Tan, T., Jain, A.K.: Live face detection based on the analysis of Fourier spectra. In: Biometric Technology for Human Identification, vol. 5404, pp. 296–304. International Society for Optics and Photonics (2004)

    Google Scholar 

  11. Anjos, A., Marcel, S.: Counter-measures to photo attacks in face recognition: a public database and a baseline. In: International Joint Conference on Biometrics, pp. 1–7. IEEE (2011)

    Google Scholar 

  12. Sun, L., Pan, G., Wu, Z., Lao, S.: Blinking-based live face detection using conditional random fields. In: Lee, S.-W., Li, S.Z. (eds.) ICB 2007. LNCS, vol. 4642, pp. 252–260. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74549-5_27

    Chapter  Google Scholar 

  13. Wen, D., Han, H., Jain, A.K.: Face spoof detection with image distortion analysis. IEEE Trans. Inf. Forensics Secur. 10(4), 746–761 (2015)

    Article  Google Scholar 

  14. Yang, J., Lei, Z., Li, S.Z.: Learn convolutional neural network for face anti-spoofing. CoRR abs/1408.5601 (2014)

    Google Scholar 

  15. Szegedy, C., et al.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)

    Google Scholar 

  16. Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., Fei-Fei, L.: Large-scale video classification with convolutional neural networks. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1725–1732, June 2014

    Google Scholar 

  17. Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22(10), 1345–1359 (2010)

    Article  Google Scholar 

  18. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015). https://doi.org/10.1007/s11263-015-0816-y

    Article  MathSciNet  Google Scholar 

  19. Chen, T., Yin, W., Zhou, X.S., Comaniciu, D., Huang, T.S.: Total variation models for variable lighting face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 28(9), 1519–1524 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Aasim Khurshid or Ricardo Grunitzki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Khurshid, A., Grunitzki, R. (2021). An Experimental Analysis of Face Anti-spoofing Strategies for Real Time Applications. In: Stephanidis, C., Antona, M., Ntoa, S. (eds) HCI International 2021 - Late Breaking Posters. HCII 2021. Communications in Computer and Information Science, vol 1499. Springer, Cham. https://doi.org/10.1007/978-3-030-90179-0_59

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-90179-0_59

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-90178-3

  • Online ISBN: 978-3-030-90179-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics