Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Hierarchical Classification Scheme for Efficient Speech Emotion Recognition

  • Conference paper
  • First Online:
HCI International 2021 - Late Breaking Posters (HCII 2021)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1499))

Included in the following conference series:

Abstract

The current study focuses on speech emotion recognition based on a hierarchical classification scheme. The study aims at overcoming the problem of low accuracy in the case of a large number of emotions that are considered in a specific task. In the proposed method, the emotions are classified based on the valence-arousal 2-dimensional map, and models are trained for each group. In a second pass, with-in group recognition is performed for the group selected in the previous stage.

Dr. Panikos Heracleous is currently with Artificial Intelligence Research Center (AIRC), AIST, Japan.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Busso, C., Bulut, M., Narayanan, S.: Toward effective automatic recognition systems of emotion in speech. In: Gratch, J., Marsella, S. (eds.) Social emotions in nature and artifact: emotions in human and human-computer interaction, pp. 110–127. Oxford University Press, New York, NY, USA (November (2013)

    Chapter  Google Scholar 

  2. Feng, H., Ueno, S., Kawahara, T.: End-to-end speech emotion recognition combined with acoustic-to-word ASR model. In: Proceedings of Interspeech, pp. 501–505 (2020)

    Google Scholar 

  3. Huang, J., Tao, J., Liu, B., Lian, Z.: Learning utterance-level representations with label smoothing for speech emotion recognition. In: Proceedings of Interspeech, pp. 4079–4083 (2020)

    Google Scholar 

  4. Jalal, M.A., Milner, R., Hain, T., Moore, R.K.: Proceedings of Interspeech, pp. 4084–4088 (2020)

    Google Scholar 

  5. Jalal, M.A., Milner, R., Hain, T.: Empirical interpretation of speech emotion perception with attention based model for speech emotion recognition. In: Proceedings of Interspeech, pp. 4113–4117 (2020)

    Google Scholar 

  6. Stuhlsatz, A., Meyer, C., Eyben, F., Zielke1, T., Meier, G., Schuller, B.: Deep neural networks for acoustic emotion recognition: raising the benchmarks. In: Proceedings of ICASSP, pp. 5688–5691 (2011)

    Google Scholar 

  7. Han, K., Yu, D., Tashev, I.: Speech emotion recognition using deep neural network and extreme learning machine. In: Proceedings of Interspeech, pp. 2023–2027 (2014)

    Google Scholar 

  8. Lim, W., Jang, D., Lee, T.: Speech emotion recognition using convolutional and recurrent neural networks. In: Proceedings of Signal and Information Processing Association Annual Summit and Conference (APSIPA) (2016)

    Google Scholar 

  9. Rawat, W., Wang, Z.: Deep convolutional neural networks for image classification: a comprehensive review. Neural Commun. 29, 2352–2449 (2017)

    Article  MathSciNet  Google Scholar 

  10. Huynh, X.-P., Tran, T.-D., Kim, Y.-G.: Convolutional neural network models for facial expression recognition using BU-3DFE database. In: Information Science and Applications (ICISA) 2016. LNEE, vol. 376, pp. 441–450. Springer, Singapore (2016). https://doi.org/10.1007/978-981-10-0557-2_44

    Chapter  Google Scholar 

  11. Busso, C., et al.: IEMOCAP: interactive emotional dyadic motion capture database. J. Lang. Resour. Eval. 335–359 (2008). https://doi.org/10.1007/s10579-008-9076-6

  12. Sahidullah, M., Saha, G.: Design, analysis and experimental evaluation of block based transformation in MFCC computation for speaker recognition. Speech Commun. 54(4), 543–565 (2012)

    Article  Google Scholar 

  13. Bielefeld, B.: Language identification using shifted delta cepstrum. In: Fourteenth Annual Speech Research Symposium (1994)

    Google Scholar 

  14. Dehak, N., Kenny, P.J., Dehak, R., Dumouchel, P., Ouellet, P.: Front-End Factor Analysis for Speaker Verification. IEEE Trans. Audio, Speech Language Process. 19(4), 788–798 (2011)

    Article  Google Scholar 

  15. Fukunaga, K.: Introduction to Statistical Pattern Recognition, 2nd ed. New York. Academic Press, Cambridge, ch. 10 (1990)

    Google Scholar 

  16. Cristianini, N., Taylor, J.S.: Support Vector Machines. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  17. Lubis, N., Sakti, S., Yoshino, K., Nakamura, S.: Positive emotion elicitation in chat-based dialogue systems. IEEE/ACM Trans. Audio, Speech Lang. Process. 27(4), 866–877 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Panikos Heracleous .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Heracleous, P., Takai, K., Yasuda, K., Yoneyama, A. (2021). A Hierarchical Classification Scheme for Efficient Speech Emotion Recognition. In: Stephanidis, C., Antona, M., Ntoa, S. (eds) HCI International 2021 - Late Breaking Posters. HCII 2021. Communications in Computer and Information Science, vol 1499. Springer, Cham. https://doi.org/10.1007/978-3-030-90179-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-90179-0_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-90178-3

  • Online ISBN: 978-3-030-90179-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics