Nothing Special   »   [go: up one dir, main page]

Skip to main content

Provable Secure Software Masking in the Real-World

  • Conference paper
  • First Online:
Constructive Side-Channel Analysis and Secure Design (COSADE 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13211))

Abstract

We evaluate eight implementations of provable secure side-channel masking schemes that were published in top-tier academic venues such as Eurocrypt, Asiacrypt, CHES and SAC. Specifically, we evaluate the side-channel attack resistance of eight open-source and first-order side-channel protected AES-128 software implementations on the Cortex-M4 platform. Using a T-test based leakage assessment we demonstrate that all implementations produce first-order leakage with as little as 10,000 traces. Additionally, we demonstrate that all except for two Inner Product Masking based implementations are vulnerable to a straightforward correlation power analysis attack. We provide an assembly level analysis showing potential sources of leakage for two implementations. Some of the studied implementations were provided for benchmarking purposes. We demonstrate several flaws in the benchmarking procedures and question the usefulness of the reported performance numbers in the face of the implementations’ poor side-channel resistance. This work serves as a reminder that practical evaluations cannot be omitted in the context of side-channel analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    arm-none-eabi toolchain release 8-2019-q3.

References

  1. Adomnicai, A., Peyrin, T.: Fixslicing AES-like ciphers: new bitsliced AES speed records on ARM-Cortex M and RISC-V. IACR Trans. Cryptogr. Hardware Embedded Syst. 2021(1), 402–425 (2020). https://doi.org/10.46586/tches.v2021.i1.402-425, https://tches.iacr.org/index.php/TCHES/article/view/8739

  2. Balasch, J., Faust, S., Gierlichs, B., Paglialonga, C., Standaert, F.-X.: Consolidating inner product masking. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10624, pp. 724–754. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70694-8_25

    Chapter  Google Scholar 

  3. Balasch, J., Gierlichs, B., Grosso, V., Reparaz, O., Standaert, F.-X.: On the cost of lazy engineering for masked software implementations. In: Joye, M., Moradi, A. (eds.) CARDIS 2014. LNCS, vol. 8968, pp. 64–81. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16763-3_5

    Chapter  Google Scholar 

  4. Benadjila, R., Khati, L., Prouff, E., Thillard, A.: Hardened Library for AES-128 encryption/decryption on ARM Cortex M4 Architecture. https://github.com/ANSSI-FR/SecAESSTM32. Accessed 13 July 2020

  5. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28632-5_2

    Chapter  Google Scholar 

  6. Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards sound approaches to counteract power-analysis attacks. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 398–412. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1_26

    Chapter  Google Scholar 

  7. Cheng, W., Carlet, C., Goli, K., Danger, J.L., Guilley, S.: Detecting faults in inner product masking scheme IPM-FD: IPM with fault detection. J. Cryptogr. Eng. 11, 119-133 (2020). https://doi.org/10.1007/s13389-020-00227-6, https://hal-cnrs.archives-ouvertes.fr/hal-02915673

  8. Coron, J.-S.: Higher order masking of look-up tables. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 441–458. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5_25

    Chapter  Google Scholar 

  9. Coron, J.-S., Giraud, C., Prouff, E., Renner, S., Rivain, M., Vadnala, P.K.: Conversion of security proofs from one leakage model to another: a new issue. In: Schindler, W., Huss, S.A. (eds.) COSADE 2012. LNCS, vol. 7275, pp. 69–81. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29912-4_6

    Chapter  Google Scholar 

  10. Coron, J.-S., Greuet, A., Zeitoun, R.: Side-channel masking with pseudo-random generator. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12107, pp. 342–375. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45727-3_12

    Chapter  Google Scholar 

  11. eShard: SCAred. https://gitlab.com/eshard/scared. Accessed 16 Dec 2021

  12. Gigerl, B., Hadzic, V., Primas, R., Mangard, S., Bloem, R.: Coco: co-design and co-verification of masked software implementations on CPUs. In: 30th USENIX Security Symposium (USENIX Security 21). USENIX Association, Aug 2021. https://www.usenix.org/conference/usenixsecurity21/presentation/gigerl

  13. Gilbert Goodwill, B.J., et al.: A testing methodology for side-channel resistance validation. In: NIST Non-invasive Attack Testing Workshop, vol. 7, pp. 115–136 (2011)

    Google Scholar 

  14. Goubin, L., Patarin, J.: DES and Differential power analysis the “duplication’’ method. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 158–172. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48059-5_15

    Chapter  MATH  Google Scholar 

  15. Groß, H., Stoffelen, K., Meyer, L.D., Krenn, M., Mangard, S.: First-order masking with only two random bits. In: Proceedings of ACM Workshop on Theory of Implementation Security Workshop, TIS@CCS 2019, London, UK, November 11, 2019, pp. 10–23 (2019). https://doi.org/10.1145/3338467.3358950

  16. Inc., M.T.: SAM D5x/E5x Family Data Sheet (2020). https://ww1.microchip.com/downloads/en/DeviceDoc/SAM_D5xE5x_Family_Data_Sheet_DS60001507F.pdf. Accessed 3 Dec 2020

  17. Ishai, Y., Sahai, A., Wagner, D.: Private circuits: securing hardware against probing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4_27

    Chapter  Google Scholar 

  18. Kannwischer, M.J., Rijneveld, J., Schwabe, P., Stoffelen, K.: PQM4: Post-quantum crypto library for the ARM Cortex-M4. https://github.com/mupq/pqm4

  19. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1_25

    Chapter  Google Scholar 

  20. McCann, D., Oswald, E., Whitnall, C.: Towards practical tools for side channel aware software engineering: ‘grey box’ modelling for instruction leakages. In: 26th USENIX Security Symposium (USENIX Security 2017), pp. 199–216. USENIX Association, Vancouver, BC, August 2017. https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/mccann

  21. NewAE Technology Inc.: ChipWhisperer. https://github.com/newaetech/chipwhisperer. Accessed 16 Dec 2021

  22. O’Flynn, C., Chen, Z.D.: ChipWhisperer: an open-source platform for hardware embedded security research. In: Prouff, E. (ed.) COSADE 2014. LNCS, vol. 8622, pp. 243–260. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10175-0_17

    Chapter  Google Scholar 

  23. Renner, S., Pozzobon, E., Mottok, J.: A hardware in the loop benchmark suite to evaluate NIST LWC ciphers on microcontrollers. In: Meng, W., Gollmann, D., Jensen, C.D., Zhou, J. (eds.) ICICS 2020. LNCS, vol. 12282, pp. 495–509. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-61078-4_28

    Chapter  Google Scholar 

  24. Rivain, M., Prouff, E.: Provably secure higher-order masking of AES. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 413–427. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15031-9_28

    Chapter  Google Scholar 

  25. Schwabe, P., Stoffelen, K.: All the AES you need on cortex-M3 and M4. In: Avanzi, R., Heys, H. (eds.) SAC 2016. LNCS, vol. 10532, pp. 180–194. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69453-5_10

    Chapter  Google Scholar 

  26. Shelton, M.A., Samwel, N., Batina, L., Regazzoni, F., Wagner, M., Yarom, Y.: ROSITA: towards automatic elimination of power-analysis leakage in ciphers. In: 28th Annual Network and Distributed System Security Symposium, NDSS 2021, virtually, 21–25 February 2021. The Internet Society (2021). https://www.ndss-symposium.org/ndss-paper/rosita-towards-automatic-elimination-of-power-analysis-leakage-in-ciphers/

  27. STMicroelectronics: RM0090 Reference manual (2019). https://www.st.com/resource/en/reference_manual/dm00031020-stm32f405-415-stm32f407-417-stm32f427-437-and-stm32f429-439-advanced-arm-based-32-bit-mcus-stmicroelectronics.pdf. Accessed 3 Dec 2020

  28. Stoffelen, K.: aes-armcortexm. https://github.com/Ko-/aes-armcortexm. Accessed 30 Sep 2020

Download references

Acknowledgements

This work was supported in part by CyberSecurity Research Flanders with reference number VR20192203. In part by the Research Council KU Leuven C1 on Security and Privacy for Cyber-Physical Systems and the Internet of Things with contract number C16/15/058. In addition, this work was supported by the European Commission through the Horizon 2020 research and innovation programme under grant agreement Cathedral ERC Advanced Grant 695305, under grant agreement H2020-FETFLAG-2018-03-820405 QRANGE and under grant agreement H2020-DS-LEIT-2017-780108 FENTEC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lennert Wouters .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Beckers, A., Wouters, L., Gierlichs, B., Preneel, B., Verbauwhede, I. (2022). Provable Secure Software Masking in the Real-World. In: Balasch, J., O’Flynn, C. (eds) Constructive Side-Channel Analysis and Secure Design. COSADE 2022. Lecture Notes in Computer Science, vol 13211. Springer, Cham. https://doi.org/10.1007/978-3-030-99766-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-99766-3_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-99765-6

  • Online ISBN: 978-3-030-99766-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics