Nothing Special   »   [go: up one dir, main page]

Skip to main content

Maturity Evaluation for Workforce Management. An Integrated Approach to Assess Digital Maturity of Workforce Management Systems

  • Conference paper
  • First Online:
Service Oriented, Holonic and Multi-agent Manufacturing Systems for Industry of the Future (SOHOMA 2021)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 1034))

Abstract

Flexible workforce allocation has become a crucial factor for the success of a company and the satisfaction of its employees. The degree of digitization in the core process of workforce allocation as well as the upstream and down-stream processes play a decisive role for planning efforts, error-proneness, and employee satisfaction in an integrated workforce management concept. However, the integrated evaluation of human, technology and organization in a holistic workforce management is currently hardly achievable with existing methods due to the complexity of the topic. In this research, a scientifically based maturity model for the holistic and process-oriented evaluation of such workforce management concepts is developed. Therefore, implications for research and practice are derived.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Villarreal, M.C., Goldsman, D., Keskinocak, P.: Workforce management and scheduling under flexible demand. Serv. Sci. 7(4), 331–351 (2015). https://doi.org/10.1287/serv.2015.0113

    Article  Google Scholar 

  2. Cuevas, R., Ferrer, J.-C., Klapp, M., Muñoz, J.-C.: A mixed integer programming approach to multi-skilled workforce scheduling. J. Sched. 19(1), 91–106 (2016). https://doi.org/10.1007/s10951-015-0450-0

    Article  MathSciNet  MATH  Google Scholar 

  3. Nurmi, K., Kyngäs, J.: The core staff rostering problem. In: International Multi Conference of Engineers and Computer Scientists (IMECS) and World Congress on Engineering (WCE 2015), Hong Kong and London, pp. 390–403. (2015). https://doi.org/10.1142/9789813142725_0031

  4. Nissen, V., Günther, M., Schumann, R.: Integrated generation of working time models and staff schedules in workforce management. In: Chio, D. et al. (eds.) Lecture Notes in Computer Science, Applications of Evolutionary Computation, pp. 491–500. Springer, Berlin, Heidelberg (2011)

    Google Scholar 

  5. Jung, K., Kulvatunyou, B., Choi, S., Brundage, M.P.: An overview of a smart manufacturing system readiness assessment. IFIP Adv. Inform. Commun. Technol. 488, 705–712 (2017)

    Article  Google Scholar 

  6. Kühn, A., Bensiek, T., Gausemeier, J.: Framework for the development of maturity based self-assessments for process improvement. In: DS 75–1: Proceedings of the 19th International Conference on Engineering Design (ICED13) (2013)

    Google Scholar 

  7. Becker, J., Knackstedt, R., Pöppelbuß, J.: Developing maturity models for IT management. Bus. Inform. Syst. Eng. 1(3), 213–222 (2009)

    Article  Google Scholar 

  8. Kohlegger, M., Maier,, R., Thalmann, S.: Understanding maturity models. Results of a Structured Content Analysis. pp. 51–61. (2009) [Online]. Available at: https://www.researchgate.net/publication/215312013_Understanding_Maturity_Models_Results_of_a_Structured_Content_Analysis

  9. Fraser, P., Moultrie, J., Gregory, M.: The use of maturity models/grids as a tool in assessing product development capability. In: 2002 IEEE International Engineering Management Conference, Cambridge, UK, pp. 244–249. (2002)

    Google Scholar 

  10. Hevner, A., March, T., Park, J., Ram, S.: Design science in information systems research. MIS Q. 28(1), 75–105 (2004). https://doi.org/10.2307/25148625

    Article  Google Scholar 

  11. de Bruin, T., Freeze, R., Kulkarni, U., Rosemann, M.: Understanding the main phases of developing a maturity assessment model. In: ACIS 2005 Proceedings (2005)

    Google Scholar 

  12. Solli-Sæther, H., Gottschalk, P.: The modeling process for stage models. J. Organ. Comput. Electron. Commer. 20(3), 279–293 (2010). https://doi.org/10.1080/10919392.2010.494535

    Article  Google Scholar 

  13. Häberer, S., Behrendt, F.: Train-the-trainer concept for the “Industrie 4.0-CheckUp”. In: Hawaii international conference on system sciences (2020). https://doi.org/10.24251/HICSS.2020.562

  14. Mettler T.: Maturity assessment models: a design science research approach. IJSSS 3(1/2), 81–98, Art. no. 38934 (2011). https://doi.org/10.1504/IJSSS.2011.038934

  15. Bitkom e., V.: Reifegradmodell digitale geschäftsprozesse—leitfaden (2020). https://www.bitkom.org/sites/default/files/2020-04/200406_lf_reifegradmodell_digitale-geschaftsprozesse_final.pdf

  16. Galaske, N., Arndt, A., Friedrich, H., Bettenhausen, K.D., Anderl, R.: Workforce management 4.0—assessment of human factors readiness towards digital manufacturing. In: Trzcielinski, S. (ed.) Advances in intelligent systems and computing, advances in ergonomics of manufacturing: managing the enterprise of the future, pp. 1206–115. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-60474-9_10

  17. Fink & Fuchs AG and ITA: HRM readiness check digitalisierung (2021). [Online]. Available at: https://lsupgrade.ita-befragung.de/index.php/476375?lang=de (Accessed on June 23, 2021).

  18. Promerit and Mercer: HR digital transformation modell (2021). [Online]. Available at: https://lgato.mecer.com/jfe/form/SV_1AfkWwdmibZYkeh?Q_SDID=SD_aWfsqLwmZeheZUN&Q_JFE=qdg (Accessed on June 23, 2021)

  19. Qin, R., Nembhard, D.A., Barnes, W.L., II.: Workforce flexibility in operations management. Surveys in Operations Res. Managem. Sci. 20(1), 19–33 (2015). https://doi.org/10.1016/j.sorms.2015.04.001

    Article  MathSciNet  Google Scholar 

  20. Häberer, S., Arlinghaus, J.: Flexible workforce allocation as driver of economical and human-oriented shop floor organization. Procedia CIRP 104(2021), 1680–1685 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Häberer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Häberer, S., Arlinghaus, J. (2022). Maturity Evaluation for Workforce Management. An Integrated Approach to Assess Digital Maturity of Workforce Management Systems. In: Borangiu, T., Trentesaux, D., Leitão, P., Cardin, O., Joblot, L. (eds) Service Oriented, Holonic and Multi-agent Manufacturing Systems for Industry of the Future. SOHOMA 2021. Studies in Computational Intelligence, vol 1034. Springer, Cham. https://doi.org/10.1007/978-3-030-99108-1_22

Download citation

Publish with us

Policies and ethics