Abstract
Flexible workforce allocation has become a crucial factor for the success of a company and the satisfaction of its employees. The degree of digitization in the core process of workforce allocation as well as the upstream and down-stream processes play a decisive role for planning efforts, error-proneness, and employee satisfaction in an integrated workforce management concept. However, the integrated evaluation of human, technology and organization in a holistic workforce management is currently hardly achievable with existing methods due to the complexity of the topic. In this research, a scientifically based maturity model for the holistic and process-oriented evaluation of such workforce management concepts is developed. Therefore, implications for research and practice are derived.
Similar content being viewed by others
References
Villarreal, M.C., Goldsman, D., Keskinocak, P.: Workforce management and scheduling under flexible demand. Serv. Sci. 7(4), 331–351 (2015). https://doi.org/10.1287/serv.2015.0113
Cuevas, R., Ferrer, J.-C., Klapp, M., Muñoz, J.-C.: A mixed integer programming approach to multi-skilled workforce scheduling. J. Sched. 19(1), 91–106 (2016). https://doi.org/10.1007/s10951-015-0450-0
Nurmi, K., Kyngäs, J.: The core staff rostering problem. In: International Multi Conference of Engineers and Computer Scientists (IMECS) and World Congress on Engineering (WCE 2015), Hong Kong and London, pp. 390–403. (2015). https://doi.org/10.1142/9789813142725_0031
Nissen, V., Günther, M., Schumann, R.: Integrated generation of working time models and staff schedules in workforce management. In: Chio, D. et al. (eds.) Lecture Notes in Computer Science, Applications of Evolutionary Computation, pp. 491–500. Springer, Berlin, Heidelberg (2011)
Jung, K., Kulvatunyou, B., Choi, S., Brundage, M.P.: An overview of a smart manufacturing system readiness assessment. IFIP Adv. Inform. Commun. Technol. 488, 705–712 (2017)
Kühn, A., Bensiek, T., Gausemeier, J.: Framework for the development of maturity based self-assessments for process improvement. In: DS 75–1: Proceedings of the 19th International Conference on Engineering Design (ICED13) (2013)
Becker, J., Knackstedt, R., Pöppelbuß, J.: Developing maturity models for IT management. Bus. Inform. Syst. Eng. 1(3), 213–222 (2009)
Kohlegger, M., Maier,, R., Thalmann, S.: Understanding maturity models. Results of a Structured Content Analysis. pp. 51–61. (2009) [Online]. Available at: https://www.researchgate.net/publication/215312013_Understanding_Maturity_Models_Results_of_a_Structured_Content_Analysis
Fraser, P., Moultrie, J., Gregory, M.: The use of maturity models/grids as a tool in assessing product development capability. In: 2002 IEEE International Engineering Management Conference, Cambridge, UK, pp. 244–249. (2002)
Hevner, A., March, T., Park, J., Ram, S.: Design science in information systems research. MIS Q. 28(1), 75–105 (2004). https://doi.org/10.2307/25148625
de Bruin, T., Freeze, R., Kulkarni, U., Rosemann, M.: Understanding the main phases of developing a maturity assessment model. In: ACIS 2005 Proceedings (2005)
Solli-Sæther, H., Gottschalk, P.: The modeling process for stage models. J. Organ. Comput. Electron. Commer. 20(3), 279–293 (2010). https://doi.org/10.1080/10919392.2010.494535
Häberer, S., Behrendt, F.: Train-the-trainer concept for the “Industrie 4.0-CheckUp”. In: Hawaii international conference on system sciences (2020). https://doi.org/10.24251/HICSS.2020.562
Mettler T.: Maturity assessment models: a design science research approach. IJSSS 3(1/2), 81–98, Art. no. 38934 (2011). https://doi.org/10.1504/IJSSS.2011.038934
Bitkom e., V.: Reifegradmodell digitale geschäftsprozesse—leitfaden (2020). https://www.bitkom.org/sites/default/files/2020-04/200406_lf_reifegradmodell_digitale-geschaftsprozesse_final.pdf
Galaske, N., Arndt, A., Friedrich, H., Bettenhausen, K.D., Anderl, R.: Workforce management 4.0—assessment of human factors readiness towards digital manufacturing. In: Trzcielinski, S. (ed.) Advances in intelligent systems and computing, advances in ergonomics of manufacturing: managing the enterprise of the future, pp. 1206–115. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-60474-9_10
Fink & Fuchs AG and ITA: HRM readiness check digitalisierung (2021). [Online]. Available at: https://lsupgrade.ita-befragung.de/index.php/476375?lang=de (Accessed on June 23, 2021).
Promerit and Mercer: HR digital transformation modell (2021). [Online]. Available at: https://lgato.mecer.com/jfe/form/SV_1AfkWwdmibZYkeh?Q_SDID=SD_aWfsqLwmZeheZUN&Q_JFE=qdg (Accessed on June 23, 2021)
Qin, R., Nembhard, D.A., Barnes, W.L., II.: Workforce flexibility in operations management. Surveys in Operations Res. Managem. Sci. 20(1), 19–33 (2015). https://doi.org/10.1016/j.sorms.2015.04.001
Häberer, S., Arlinghaus, J.: Flexible workforce allocation as driver of economical and human-oriented shop floor organization. Procedia CIRP 104(2021), 1680–1685 (2021)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Häberer, S., Arlinghaus, J. (2022). Maturity Evaluation for Workforce Management. An Integrated Approach to Assess Digital Maturity of Workforce Management Systems. In: Borangiu, T., Trentesaux, D., Leitão, P., Cardin, O., Joblot, L. (eds) Service Oriented, Holonic and Multi-agent Manufacturing Systems for Industry of the Future. SOHOMA 2021. Studies in Computational Intelligence, vol 1034. Springer, Cham. https://doi.org/10.1007/978-3-030-99108-1_22
Download citation
DOI: https://doi.org/10.1007/978-3-030-99108-1_22
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-99107-4
Online ISBN: 978-3-030-99108-1
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)