Nothing Special   »   [go: up one dir, main page]

Skip to main content

Review and Classification of Digital Manufacturing Reference Architectures

  • Conference paper
  • First Online:
Service Oriented, Holonic and Multi-agent Manufacturing Systems for Industry of the Future (SOHOMA 2021)

Abstract

For the next generation of production systems, companies require new architectures for designing highly connected systems to increase the efficiency and capabilities of their value chains. Reference architectures help to effectively derive systems architectures. Over the last decades, numerous reference architectures for digital manufacturing have been proposed. This paper presents a framework to classify reference architectures based on five main themes identified in the literature. It will identify gaps in existing reference architectures based on an analysis of the proposed framework and comparison to other classification approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abeyratne, S.A., Monfared, R.P.: Blockchain ready manufacturing supply chain using distributed ledger. Int. J. Res. Eng. Technol., 1–10 (2016)

    Google Scholar 

  2. Aheleroff, S., Xu, X., Zhong, R.Y., Lu, Y.: Digital twin as a service (dtaas) in industry 4.0: An architecture reference model. Adv. Eng. Informatics 47 (2021). https://doi.org/10.1016/j.aei.2020.101225

  3. Alliance for Internet of Things Innovation: High Level Architecture (HLA) (2018). https://aioti.eu/wp-content/uploads/2018/06/AIOTI-HLA-R4.0.7.1-Final.pdf

  4. Atzori, L., Iera, A., Morabito, G.: The internet of things: a survey. Comput. Netw. 54, 2787–2805 (2010). https://doi.org/10.1016/j.comnet.2010.05.010

    Article  MATH  Google Scholar 

  5. Bader, S.R., Maleshkova, M., Lohmann, S.: Structuring reference architectures for the industrial internet of things. Future Internet 11 (2019). https://doi.org/10.3390/fi11070151

  6. Barbosa, J., Leitão, P., Adam, E., Trentesaux, D.: Dynamic self-organization in holonic multi-agent manufacturing systems: the adacor evolution. Comput. Industry 66, 99–111 (2015). https://doi.org/10.1016/j.compind.2014.10.011

    Article  Google Scholar 

  7. Bauer, M., Boussard, M., Lucent, A., Bui, N., Carrez, F.: Internet of things—architecture iot-a deliverable d1.5—final architectural reference model for the iot v3.0 (2013). https://www.researchgate.net/publication/272814818

  8. Brussel, H.V., Wyns, J., Valckenaers, P., Bongaerts, L., Peeters, P.: Reference architecture for holonic manufacturing systems: Prosa. Comput. Industry 37, 255–274 (1998). www.mech.kuleuven.ac.berpmarpma.html

  9. Chen, D., Doumeingts, G.: The grai-gim reference model, architecture and methodology. In: Architectures for Enterprise Integration, pp. 102–126 (1996)

    Google Scholar 

  10. Chen, Y., Tseng, M.M.: A stair-like cim system architecture. IEEE Trans. Components Packaging Manuf. Technol. 20, 101 (1997)

    Article  Google Scholar 

  11. Chirn, J.L., McFarlane, D.C.: A holonic component-based approach to reconfigurable manufacturing control architecture. Institute of Electrical and Electronics Engineers Inc, pp. 219–223 (2000). https://doi.org/10.1109/DEXA.2000.875030

  12. Cisco: The Internet of Things Reference Model [White Paper] (2014). http://cdn.iotwf.com/resources/71/IoT_Reference_Model_White_Paper_June_4_2014.pdf

  13. Consortium, I.I.: Industrial internet reference architecture (2015)

    Google Scholar 

  14. Davis, J., Edgar, T., Porter, J., Bernaden, J., Sarli, M.: Smart manufacturing, manufacturing intelligence and demand-dynamic performance. Comput. Chem. Eng. 47, 145–156 (2012). https://doi.org/10.1016/j.compchemeng.2012.06.037

    Article  Google Scholar 

  15. Derigent, W., Cardin, O., Trentesaux, D.: Industry 4.0: contributions of holonic manufacturing control architectures and future challenges. J. Intelligent Manuf. (2020). https://doi.org/10.1007/s10845-020-01532-x

  16. Doumeingts, G., Vallespir, B., Chen, D.: Metlhodologies for designing cim systems: a survey. Comput. Industry 25, 263–280 (1995)

    Article  Google Scholar 

  17. Farsi, M., Latsou, C., Erkoyuncu, J.A., Morris, G.: Rfid application in a multi-agent cyber physical manufacturing system. J. Manuf. Mater. Process. 4, 103 (2020). https://doi.org/10.3390/jmmp4040103

    Article  Google Scholar 

  18. Fraile, F., Sanchis, R., Poler, R., Ortiz, A.: Reference models for digital manufacturing platforms. Appl. Sci. (Switzerland) 9 (2019). https://doi.org/10.3390/app9204433

  19. Fremantle, P.: A reference architecture for the internet of things (2015). https://doi.org/10.13140/RG.2.2.20158.89922. https://www.researchgate.net/publication/308647314

  20. Giese, H., Karsai, G., Lee, E., Rumpe, B., Schätz, B.: Model-Based Engineering of Embedded Real-Time Systems (2007)

    Google Scholar 

  21. Griffor, E.R., Greer, C., Wollman, D.A., Burns, M.J.: Framework for Cyber-Physical Systems: Volume 1, overview (2017). https://doi.org/10.6028/NIST.SP.1500-201. https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.1500-201.pdf

  22. Han, S.: A review of smart manufacturing reference models based on the skeleton meta-model. J. Comput. Des. Eng. 7, 323–336 (2020). https://doi.org/10.1093/jcde/qwaa027

    Article  Google Scholar 

  23. Havard, V., Sahnoun, M., Bettayeb, B., Duval, F., Baudry, D.: Data architecture and model design for industry 4.0 components integration in cyber-physical production systems. In: Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture (2020). https://doi.org/10.1177/0954405420979463

  24. IBM: Industry 4.0. https://www.ibm.com/cloud/architecture/architectures/iot_industrie_40/ (2021)

  25. Iec 62264-1:2003—Enterprise-Control System Integration—Part 1: Models and Terminology

    Google Scholar 

  26. Iec/pas 63088:2017—Smart Manufacturing—Reference Architecture Model Industry 4.0 (rami4.0)

    Google Scholar 

  27. Indriago, C., Cardin, O., Rakoto, N., Castagna, P., Chacòn, E.: H2cm: a holonic architecture for flexible hybrid control systems. Comput. Industry 77, 15–28 (2016). https://doi.org/10.1016/j.compind.2015.12.005

    Article  Google Scholar 

  28. Initiative, I.V.C.: Industrial Value Chain Reference Architecture (2016)

    Google Scholar 

  29. Iso/iec 30141:2018—Internet of Things (IoT)—Reference Architecture

    Google Scholar 

  30. Iso/iec tr 63306-1:2020—Smart Manufacturing Standards Map (sm2)—Part 1, Framework

    Google Scholar 

  31. Iso/tr 23087:2018—Automation Systems and Integration—The Big Picture of Standards

    Google Scholar 

  32. Jiang, J.R.: An improved cyber-physical systems architecture for industry 4.0 smart factories. Adv. Mech. Eng. 10 (2018). https://doi.org/10.1177/1687814018784192

  33. Jimenez, J.F., Bekrar, A., Zambrano-Rey, G., Trentesaux, D., Leitão, P.: Pollux: a dynamic hybrid control architecture for flexible job shop systems. Int. J. Prod. Res. 55, 4229–4247 (2017). https://doi.org/10.1080/00207543.2016.1218087

    Article  Google Scholar 

  34. Karsai, G., Nordstrom, G., Ledeczi, A., Sztipanovits, J.: Specifying Graphical Modeling Systems Using Constraint-Based Metamodels, p. 20 (2000)

    Google Scholar 

  35. Kassner, L., Gröger, C., Königsberger, J., Hoos, E., Kiefer, C., Weber, C., Silcher, S., Mitschang, B.: The Stuttgart it Architecture for Manufacturing an Architecture for the Data-Driven Factory, pp. 53–80. Springer, Berlin (2017). https://doi.org/10.1007/978-3-319-62386-3_3

  36. Kosanke, K.: Cimosa—overview and status. Comput. Industry 27, 101–109 (1995)

    Article  Google Scholar 

  37. Lagally, M., Matsukura, R., Kawaguchi, T., Toumura, K., Kajimoto, K.: Web of Things (WoT) Architecture 1.1—w3c Editor’s Draft, 27 may 2021. https://w3c.github.io/wot-architecture/ (2021)

  38. Lee, J., Azamfar, M., Singh, J.: A blockchain enabled cyber-physical system architecture for industry 4.0 manufacturing systems. Manuf. Lett. 20, 34–39 (2019). https://doi.org/10.1016/j.mfglet.2019.05.003

  39. Lee, J., Bagheri, B., Kao, H.A.: A cyber-physical systems architecture for industry 4.0-based manufacturing systems. Manuf. Lett. 3, 18–23 (2015). https://doi.org/10.1016/j.mfglet.2014.12.001

  40. Leitão, P., Restivo, F.: Adacor: a holonic architecture for agile and adaptive manufacturing control. Comput. Industry 57, 121–130 (2006). https://doi.org/10.1016/j.compind.2005.05.005

    Article  Google Scholar 

  41. Li, Q., Tang, Q., Chan, I., Wei, H., Pu, Y., Jiang, H., Li, J., Zhou, J.: Smart manufacturing standardization: architectures, reference models and standards framework. Comput. Industry 101, 91–106 (2018). https://doi.org/10.1016/j.compind.2018.06.005

    Article  Google Scholar 

  42. Liu, C., Jiang, P.: A cyber-physical system architecture in shop floor for intelligent manufacturing, pp. 372–377. Elsevier B.V. (2016). https://doi.org/10.1016/j.procir.2016.10.059

  43. Lu, Y., Morris, K., Frechette, S.: Current Standards Landscape for Smart Manufacturing Systems (2016). https://doi.org/10.6028/NIST.IR.8107. https://nvlpubs.nist.gov/nistpubs/ir/2016/NIST.IR.8107.pdf

  44. Lu, Y., Riddick, F., Ivezic, N.: The Paradigm Shift in Smart Manufacturing System Architecture, pp. 767–776. Springer, New York LLC (2016). https://doi.org/10.1007/978-3-319-51133-7_90

  45. Marques, M.R.N., Maciel, B.K., Balota, G.M., Fonseca, R.T., Simosa, M., Conceição, H.S., Gonçalves, E.M.N., Botelho, S.S.D.C.: Embedded Agent Based on Cyber Physical Systems: Architecture, Hardware Definition and Application in Industry 4.0 Context, pp. 584–591. SciTePress (2018). https://doi.org/10.5220/0006863505840591

  46. McFarlane, D., Ratchev, S., Thorne, A., Parlikad, A., Silva, L.D., Schönfuß, B., Hawkridge, G., Terrazas, G., Tlegenov, Y.: Digital manufacturing on a Shoestring: Low Cost Digital Solutions for SMES (2019). https://doi.org/10.1007/978-3-030-27477-1_4

  47. Megow, J.: Reference Architecture Models for Industry 4.0, Smart Manufacturing and IoT—An Introduction (2020). www.paice.de

  48. Mittal, S., Khan, M.A., Romero, D., Wuest, T.: Smart manufacturing: characteristics, technologies and enabling factors. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 233, 1342–1361 (2019). https://doi.org/10.1177/0954405417736547

    Article  Google Scholar 

  49. Mittal, S., Khan, M.A., Purohit, J.K., Menon, K., Romero, D., Wuest, T.: A smart manufacturing adoption framework for smes. Int. J. Prod. Res. 58, 1555–1573 (2020). https://doi.org/10.1080/00207543.2019.1661540

    Article  Google Scholar 

  50. Monostori, L.: Cyber-Physical Production Systems: Roots, Expectations and R&D Challenges, pp. 9–13. Elsevier B.V. (2014). https://doi.org/10.1016/j.procir.2014.03.115

  51. Mortellec, A.L., Clarhaut, J., Sallez, Y., Berger, T., Trentesaux, D.: Embedded holonic fault diagnosis of complex transportation systems. Eng. Appl. Artif. Intelligence 26, 227–240 (2013). https://doi.org/10.1016/j.engappai.2012.09.008

    Article  Google Scholar 

  52. Moss, S.P.: A management and control architecture for factory-floor systems: From concept to reality. Int. J. Comput. Integr. Manuf. 2, 106–113 (1989). https://doi.org/10.1080/09511928908944388

    Article  Google Scholar 

  53. Pach, C., Berger, T., Bonte, T., Trentesaux, D.: Orca-fms: a dynamic architecture for the optimized and reactive control of flexible manufacturing scheduling. Comput. Industry 65, 706–720 (2014). https://doi.org/10.1016/j.compind.2014.02.005

    Article  Google Scholar 

  54. Paolucci, M., Sacile, R.: Agent-Based Manufacturing and Control Systems: New Agile Manufacturing Solutions for Achieving Peak Performance, p. 269 (2005)

    Google Scholar 

  55. Papazoglou, M.P., Heuvel, W.J.V.D.: Service oriented architectures: approaches, technologies and research issues. VLDB J. 16, 389–415 (2007). https://doi.org/10.1007/s00778-007-0044-3

    Article  Google Scholar 

  56. Pedone, G., Mezgár, I.: Model similarity evidence and interoperability affinity in cloud-ready industry 4.0 technologies. Comput. Industry 100, 278–286 (2018). https://doi.org/10.1016/j.compind.2018.05.003

  57. Pérez, F., Irisarri, E., Orive, D., Marcos, M., Estevez, E.: A cpps architecture approach for industry 4.0. Institute of Electrical and Electronics Engineers Inc. (2015). https://doi.org/10.1109/ETFA.2015.7301606

  58. Pivoto, D.G., de Almeida, L.F., da Rosa Righi, R., Rodrigues, J.J., Lugli, A.B., Alberti, A.M.: Cyber-physical systems architectures for industrial internet of things applications in industry 4.0: A literature review. J. Manuf. Syst. 58, 176–192 (2021). https://doi.org/10.1016/j.jmsy.2020.11.017

  59. Pujo, P., Broissin, N., Ounnar, F.: Prosis: an isoarchic structure for hms control. Eng. Appl. Artif. Intelligence 22, 1034–1045 (2009). https://doi.org/10.1016/j.engappai.2009.01.011

    Article  Google Scholar 

  60. Quintanilla, F.G., Cardin, O., L’Anton, A., Castagna, P.: A modeling framework for manufacturing services in service-oriented holonic manufacturing systems. Eng. Appl. Artif. Intelligence 55, 26–36 (2016). https://doi.org/10.1016/j.engappai.2016.06.004

    Article  Google Scholar 

  61. Recommendation itu-t y.2060:2012—Overview of the Internet of Things

    Google Scholar 

  62. Rojko, A.: Industry 4.0 concept: background and overview. Int. J. Interactive Mobile Technol. 11, 77–90 (2017). https://doi.org/10.3991/ijim.v11i5.7072

  63. Schönfuß, B., Mcfarlane, D., Athanassopoulou, N., Salter, L., Silva, L.D., Ratchev, S.: Prioritising low cost digital solutions required by manufacturing SMES: a shoestring approach, pp. 290–300 (2020). https://doi.org/10.1007/978-3-030-27477-1_22

  64. Sisinni, E., Saifullah, A., Han, S., Jennehag, U., Gidlund, M.: Industrial internet of things: challenges, opportunities, and directions. IEEE Trans. Industrial Informatics 14, 4724–4734 (2018). https://doi.org/10.1109/TII.2018.2852491

    Article  Google Scholar 

  65. Soares, N., Monteiro, P., Duarte, F.J., Machado, R.J.: An Aligned Reference Model for Digital Factories (2020)

    Google Scholar 

  66. Soares, N., Monteiro, P., Duarte, F.J., Machado, R.J.: Extending the Scope of Reference Models for Smart Factories, pp. 102–111. Elsevier B.V. (2021). https://doi.org/10.1016/j.procs.2021.01.134

  67. Tao, F., Cheng, J., Qi, Q., Zhang, M., Zhang, H., Sui, F.: Digital twin-driven product design, manufacturing and service with big data. Int. J. Adv. Manuf. Technol. 94, 3563–3576 (2018). https://doi.org/10.1007/s00170-017-0233-1

    Article  Google Scholar 

  68. Valckenaers, P.: Arti Reference Architecture—prosa Revisited (2018)

    Google Scholar 

  69. Vallespir, B., Merle, C., Doumeingts, G.: The GRAI Integrated Method: A Technico- Economical Methodology to Design Manufacturing Systems, pp. 73–78. Elsevier BV (1992). https://doi.org/10.1016/s1474-6670(17)52231-4

  70. Verstraete, P., Germain, B.S., Valckenaers, P., Brussel, H.V., Belle, J.V., Karuna, H., Belle, J.V., Karuna, H.: Engineering manufacturing control systems using prosa and delegate mas. Int. J. Agent-Oriented Softw. Eng. 2, 62–89 (2008). https://doi.org/10.1504/IJAOSE.2008.016800

    Article  Google Scholar 

  71. Wei, S., Hu, J., Cheng, Y., Ma, Y., Yu, Y.: The Essential Elements of Intelligent Manufacturing System Architecture (2017)

    Google Scholar 

  72. Weyrich, M., Ebert, C.: Reference architectures for the Internet of Things. IEEE Softw. 33, 112–116 (2016). https://doi.org/10.1109/MS.2016.20

    Article  Google Scholar 

  73. Williams, T.J.: The purdue enterprise reference architecture. Comput. Industry 24, 141–158 (1994)

    Article  Google Scholar 

  74. Willner, A., Gowtham, V.: Preprint: Toward a Reference Architecture Model for Industrial Edge Computing (2020). http://ieee802.org/1/pages/tsn.html

  75. Yu, C., Xu, X., Lu, Y.: Computer-integrated manufacturing, cyber-physical systems and cloud manufacturing—concepts and relationships. Manuf. Lett. 6, 5–9 (2015). https://doi.org/10.1016/j.mfglet.2015.11.005

    Article  Google Scholar 

  76. Zhang, C., Zhou, G., Li, H., Cao, Y.: Manufacturing blockchain of things for the configuration of a data- and knowledge-driven digital twin manufacturing cell. IEEE Internet Things J. 7, 11884–11894 (2020). https://doi.org/10.1109/JIOT.2020.3005729

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Kaiser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kaiser, J., McFarlane, D., Hawkridge, G. (2022). Review and Classification of Digital Manufacturing Reference Architectures. In: Borangiu, T., Trentesaux, D., Leitão, P., Cardin, O., Joblot, L. (eds) Service Oriented, Holonic and Multi-agent Manufacturing Systems for Industry of the Future. SOHOMA 2021. Studies in Computational Intelligence, vol 1034. Springer, Cham. https://doi.org/10.1007/978-3-030-99108-1_17

Download citation

Publish with us

Policies and ethics