Abstract
Traditional machine learning techniques (excluding deep learning) include a range of approaches, such as supervised, semi-supervised, and unsupervised modeling methods, often coupled with data augmentation and dimensionality reduction. The aim of this chapter is to provide an overview of the application of traditional machine learning methods in the field of side-channel analysis. The chapter encompasses the common methods used in side-channel attacks, a historical overview of the use of machine learning methods in side-channel analysis, and a brief description of various machine learning approaches that have been used in related studies. Both machine learning methods and side-channel specific methods such as Principal Component Analysis, Linear Discriminant Analysis, Template Attacks, Random Forests, Multilayer Perceptron and many others are compared and the current status of their use in side-channel analysis is presented. Several research avenues are still incomplete and the chapter points out some of the open questions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Data masking is the process of hiding original data by altering its content. It is based on the simple idea that the message and the key are masked with a randomly generated mask at the beginning of the computation, after which the rest is performed as if there were no mask. At the end, the mask must be known so that the original data can be recovered.
- 2.
It is possible to perform SCA with power, electromagnetic, acoustic, or other signal types, see Table 1, but in this chapter, for simplicity and because they are common, we will consider only power signals. Similar models can be described for other signal types.
- 3.
Multivariate SCA considers multiple time points of the measured traces when building the model.
References
Alpaydin, E.: Chapter 13, Kernel machines. In: Introduction to Machine Learning, 2nd edn. The MIT Press (2010)
Archambeau, C., Peeters, E., Standaert, F.-X., Quisquater, J.-J.: Template attacks in principal subspaces. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 1–14. Springer, Heidelberg (2006). https://doi.org/10.1007/11894063_1
Asonov, D., Agrawal, R.: Keyboard acoustic emanations. In: 2004 IEEE Symposium on Security and Privacy (S&P 2004), 9–12 May 2004, Berkeley, CA, USA, pp. 3–11. IEEE Computer Society (2004). https://doi.org/10.1109/SECPRI.2004.1301311
Backes, M., Dürmuth, M., Gerling, S., Pinkal, M., Sporleder, C.: Acoustic side-channel attacks on printers. In: Proceedings of 19th USENIX Security Symposium, Washington, DC, USA, 11–13 August 2010, pp. 307–322. USENIX Association (2010). http://www.usenix.org/events/sec10/tech/full_papers/Backes.pdf
Bartkewitz, T., Lemke-Rust, K.: Efficient template attacks based on probabilistic multi-class support vector machines. In: Mangard, S. (ed.) CARDIS 2012. LNCS, vol. 7771, pp. 263–276. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37288-9_18
Batina, L., Chmielewski, Ł, Papachristodoulou, L., Schwabe, P., Tunstall, M.: Online template attacks. In: Meier, W., Mukhopadhyay, D. (eds.) INDOCRYPT 2014. LNCS, vol. 8885, pp. 21–36. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13039-2_2
Batina, L., Gierlichs, B., Lemke-Rust, K.: Differential cluster analysis. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 112–127. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04138-9_9
Bhasin, S., Danger, J., Guilley, S., Najm, Z.: NICV: normalized inter-class variance for detection of side-channel leakage. In: 2014 International Symposium on Electromagnetic Compatibility, Tokyo, pp. 310–313 (2014)
Bramer, M.: Introduction to classification: naïve bayes and nearest neighbour. In: Bramer, M. (ed.) Principles of Data Mining. Undergraduate Topics in Computer Science, pp. 21–37. Springer, London (2013). https://doi.org/10.1007/978-1-4471-4884-5_3
Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001). https://doi.org/10.1023/A:1010933404324
Bruneau, N., Danger, J.-L., Guilley, S., Heuser, A., Teglia, Y.: Boosting higher-order correlation attacks by dimensionality reduction. In: Chakraborty, R.S., Matyas, V., Schaumont, P. (eds.) SPACE 2014. LNCS, vol. 8804, pp. 183–200. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-12060-7_13
Bucci, M., Guglielmo, M., Luzzi, R., Trifiletti, A.: A power consumption randomization countermeasure for DPA-resistant cryptographic processors. In: Macii, E., Paliouras, V., Koufopavlou, O. (eds.) PATMOS 2004. LNCS, vol. 3254, pp. 481–490. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30205-6_50
Cagli, E.: Feature extraction for side-channel attacks. Ph.D. thesis, Sorbonne Université, December 2018
Cagli, E., Dumas, C., Prouff, E.: Enhancing dimensionality reduction methods for side-channel attacks. In: Homma, N., Medwed, M. (eds.) CARDIS 2015. LNCS, vol. 9514, pp. 15–33. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-31271-2_2
Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski, B.S., Koç, K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36400-5_3
Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: synthetic minority over-sampling technique. J. Artif. Int. Res. 16(1), 321–357 (2002)
Choudary, O., Kuhn, M.G.: Efficient template attacks. In: Francillon, A., Rohatgi, P. (eds.) CARDIS 2013. LNCS, vol. 8419, pp. 253–270. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08302-5_17
Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic analysis: concrete results. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 251–261. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44709-1_21
Gierlichs, B., Lemke-Rust, K., Paar, C.: Templates vs. stochastic methods. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 15–29. Springer, Heidelberg (2006). https://doi.org/10.1007/11894063_2
Heuser, A., Zohner, M.: Intelligent machine homicide - breaking cryptographic devices using support vector machines. In: Schindler, W., Huss, S.A. (eds.) COSADE 2012. LNCS, vol. 7275, pp. 249–264. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29912-4_18
Heyszl, J., Ibing, A., Mangard, S., De Santis, F., Sigl, G.: Clustering algorithms for non-profiled single-execution attacks on exponentiations. In: Francillon, A., Rohatgi, P. (eds.) CARDIS 2013. LNCS, vol. 8419, pp. 79–93. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08302-5_6
Hospodar, G., de Mulder, E., Gierlichs, B., Verbauwhede, I., Vandewalle, J.: Least squares support vector machines for side-channel analysis. In: Second International Workshop on Constructive SideChannel Analysis and Secure Design, pp. 99–104. Center for Advanced Security Research Darmstadt (2011)
Järvinen, K., Balasch, J.: Single-trace side-channel attacks on scalar multiplications with precomputations. In: Lemke-Rust, K., Tunstall, M. (eds.) CARDIS 2016. LNCS, vol. 10146, pp. 137–155. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-54669-8_9
Karlof, C., Wagner, D.: Hidden Markov model cryptanalysis. In: Walter, C.D., Koç, Ç.K., Paar, C. (eds.) CHES 2003. LNCS, vol. 2779, pp. 17–34. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45238-6_3
Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1_25
Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5_9
Lemke-Rust, K., Paar, C.: Gaussian mixture models for higher-order side channel analysis. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 14–27. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74735-2_2
Lerman, L., Bontempi, G., Markowitch, O.: Side channel attack: an approach based on machine learning. In: Second International Workshop on Constructive SideChannel Analysis and Secure Design, pp. 29–41. Center for Advanced Security Research Darmstadt (2011)
Lerman, L., Bontempi, G., Markowitch, O.: Power analysis attack: an approach based on machine learning. Int. J. Appl. Cryptol. 3(2), 97–115 (2014). https://doi.org/10.1504/IJACT.2014.062722
Lerman, L., Bontempi, G., Ben Taieb, S., Markowitch, O.: A time series approach for profiling attack. In: Gierlichs, B., Guilley, S., Mukhopadhyay, D. (eds.) SPACE 2013. LNCS, vol. 8204, pp. 75–94. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41224-0_7
Lerman, L., Medeiros, S.F., Bontempi, G., Markowitch, O.: A machine learning approach against a masked AES. In: Francillon, A., Rohatgi, P. (eds.) CARDIS 2013. LNCS, vol. 8419, pp. 61–75. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08302-5_5
Lerman, L., Medeiros, S.F., Veshchikov, N., Meuter, C., Bontempi, G., Markowitch, O.: Semi-supervised template attack. In: Prouff, E. (ed.) COSADE 2013. LNCS, vol. 7864, pp. 184–199. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40026-1_12
Lerman, L., Poussier, R., Bontempi, G., Markowitch, O., Standaert, F.-X.: Template attacks vs. machine learning revisited (and the curse of dimensionality in side-channel analysis). In: Mangard, S., Poschmann, A.Y. (eds.) COSADE 2014. LNCS, vol. 9064, pp. 20–33. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21476-4_2
Lerman, L., Poussier, R., Markowitch, O., Standaert, F.: Template attacks versus machine learning revisited and the curse of dimensionality in side-channel analysis: extended version. J. Cryptogr. Eng. 8(4), 301–313 (2018). https://doi.org/10.1007/s13389-017-0162-9
Liu, B., Ding, Z., Pan, Y., Li, J., Feng, H.: Side-channel attacks based on collaborative learning. In: Zou, B., Li, M., Wang, H., Song, X., Xie, W., Lu, Z. (eds.) ICPCSEE 2017. CCIS, vol. 727, pp. 549–557. Springer, Singapore (2017). https://doi.org/10.1007/978-981-10-6385-5_46
Maghrebi, H., Portigliatti, T., Prouff, E.: Breaking cryptographic implementations using deep learning techniques. In: Carlet, C., Hasan, M.A., Saraswat, V. (eds.) SPACE 2016. LNCS, vol. 10076, pp. 3–26. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49445-6_1
Mangard, S., Elisabeth, O., Standaert, F.X.: One for all - all for one: unifying standard differential power analysis attacks. IET Inf. Secur. 5, 100–110 (2011)
Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks: Revealing the Secrets of Smart Cards. Springer, Heidelberg (2007). https://doi.org/10.1007/978-0-387-38162-6
Martinasek, Z., Clupek, V., Krisztina, T.: General scheme of differential power analysis. In: 2013 36th International Conference on Telecommunications and Signal Processing (TSP), pp. 358–362 (2013). https://doi.org/10.1109/TSP.2013.6613952
Martinasek, Z., Dzurenda, P., Malina, L.: Profiling power analysis attack based on MLP in DPA contest V4.2. In: 39th International Conference on Telecommunications and Signal Processing, TSP 2016, Vienna, Austria, 27–29 June 2016, pp. 223–226. IEEE (2016). https://doi.org/10.1109/TSP.2016.7760865
Martinasek, Z., Hajny, J., Malina, L.: Optimization of power analysis using neural network. In: Francillon, A., Rohatgi, P. (eds.) CARDIS 2013. LNCS, vol. 8419, pp. 94–107. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08302-5_7
Mitchell, T.M.: Machine Learning. McGraw Hill Series in Computer Science. McGraw-Hill (1997)
Montavon, G., Samek, W., Müller, K.R.: Methods for interpreting and understanding deep neural networks. Digit. Signal Process. 73, 1 – 15 (2018). https://doi.org/10.1016/j.dsp.2017.10.011, http://www.sciencedirect.com/science/article/pii/S1051200417302385
Nascimento, E., Chmielewski, Ł: Applying horizontal clustering side-channel attacks on embedded ECC implementations. In: Eisenbarth, T., Teglia, Y. (eds.) CARDIS 2017. LNCS, vol. 10728, pp. 213–231. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75208-2_13
Perin, G., Imbert, L., Torres, L., Maurine, P.: Attacking randomized exponentiations using unsupervised learning. In: Prouff, E. (ed.) COSADE 2014. LNCS, vol. 8622, pp. 144–160. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10175-0_11
Picek, S., Heuser, A., Jovic, A., Batina, L.: A systematic evaluation of profiling through focused feature selection. IEEE Trans. Very Large Scale Integrat. (VLSI) Syst. 27(12), 2802–2815 (2019). https://doi.org/10.1109/TVLSI.2019.2937365
Picek, S., Heuser, A., Guilley, S.: Template attack versus bayes classifier. J. Cryptogr. Eng. 7(4), 343–351 (2017). https://doi.org/10.1007/s13389-017-0172-7
Picek, S., Heuser, A., Jovic, A., Batina, L., Legay, A.: The secrets of profiling for side-channel analysis: feature selection matters. IACR Cryptol. ePrint Arch. 2017, 1110 (2017). http://eprint.iacr.org/2017/1110
Picek, S., Heuser, A., Jovic, A., Bhasin, S., Regazzoni, F.: The curse of class imbalance and conflicting metrics with machine learning for side-channel evaluations. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2019(1), 209–237 (2018). https://doi.org/10.13154/tches.v2019.i1.209-237, https://tches.iacr.org/index.php/TCHES/article/view/7339
Picek, S., Heuser, A., Jovic, A., Knezevic, K., Richmond, T.: Improving side-channel analysis through semi-supervised learning. In: Bilgin, B., Fischer, J.-B. (eds.) CARDIS 2018. LNCS, vol. 11389, pp. 35–50. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-15462-2_3
Picek, S., Heuser, A., Jovic, A., Legay, A.: Climbing down the hierarchy: hierarchical classification for machine learning side-channel attacks. In: Joye, M., Nitaj, A. (eds.) AFRICACRYPT 2017. LNCS, vol. 10239, pp. 61–78. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57339-7_4
Picek, S., et al.: Side-channel analysis and machine learning: a practical perspective. In: 2017 International Joint Conference on Neural Networks, IJCNN 2017, Anchorage, AK, USA, pp. 4095–4102 (2017). https://doi.org/10.1109/IJCNN.2017.7966373
Quisquater, J.-J., Samyde, D.: ElectroMagnetic analysis (EMA): measures and counter-measures for smart cards. In: Attali, I., Jensen, T. (eds.) E-smart 2001. LNCS, vol. 2140, pp. 200–210. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45418-7_17, http://dl.acm.org/citation.cfm?id=646803.705980
Reparaz, O., Gierlichs, B., Verbauwhede, I.: Selecting time samples for multivariate DPA attacks. In: Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS, vol. 7428, pp. 155–174. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33027-8_10
Rivest, R., Shamir, A., Adleman, L.M.: Method for obtaining digital signatures and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)
Souissi, Y., Nassar, M., Guilley, S., Danger, J.-L., Flament, F.: First principal components analysis: a new side channel distinguisher. In: Rhee, K.-H., Nyang, D.H. (eds.) ICISC 2010. LNCS, vol. 6829, pp. 407–419. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24209-0_27
Specht, R., Heyszl, J., Kleinsteuber, M., Sigl, G.: Improving non-profiled attacks on exponentiations based on clustering and extracting leakage from multi-channel high-resolution EM measurements. In: Mangard, S., Poschmann, A.Y. (eds.) COSADE 2014. LNCS, vol. 9064, pp. 3–19. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21476-4_1
Standaert, F.X.: Introduction to side-channel attacks. In: Verbauwhede, I.M. (ed.) Secure Integrated Circuits and Systems, pp. 27–42. Springer, Boston (2010). https://doi.org/10.1007/978-0-387-71829-3_2
Standaert, F.-X., Malkin, T.G., Yung, M.: A unified framework for the analysis of side-channel key recovery attacks. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 443–461. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01001-9_26
Sönmez, B., Sarıkaya, A.A., Bahtiyar, S.: Machine learning based side channel selection for time-driven cache attacks on AES. In: 2019 4th International Conference on Computer Science and Engineering (UBMK), pp. 1–5 (2019). https://doi.org/10.1109/UBMK.2019.8907211
Tian, Q., Huss, S.A.: A general approach to power trace alignment for the assessment of side-channel resistance of hardened cryptosystems. In: 2012 Eighth International Conference on Intelligent Information Hiding and Multimedia Signal Processing, pp. 465–470 (2012). https://doi.org/10.1109/IIH-MSP.2012.119
Timon, B.: Non-profiled deep learning-based side-channel attacks with sensitivity analysis. IACR Trans. Cryptogr. Hardw. Embedd. Syst. 2019(2), 107–131 (2019). https://doi.org/10.13154/tches.v2019.i2.107-131, https://tches.iacr.org/index.php/TCHES/article/view/7387
Witten, I.H., Frank, E., Hall, M.A.: Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufmann Series in Data Management Systems, 3 edn. Morgan Kaufmann, Amsterdam (2011). http://www.sciencedirect.com/science/book/9780123748560
Yang, W., Cao, Y., Zhou, Y., Zhang, H., Zhang, Q.: Distance based leakage alignment for side channel attacks. IEEE Signal Process. Lett. 23(4), 419–423 (2016). https://doi.org/10.1109/LSP.2016.2521441
Zheng, N., Xue, J.: Manifold Learning, pp. 87–119. Springer, London (2009). https://doi.org/10.1007/978-1-84882-312-9_4
Zheng, Y., Zhou, Y., Yu, Z., Hu, C., Zhang, H.: How to compare selections of points of interest for side-channel distinguishers in practice? In: Hui, L.C.K., Qing, S.H., Shi, E., Yiu, S.M. (eds.) ICICS 2014. LNCS, vol. 8958, pp. 200–214. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21966-0_15
Zhou, Y., Feng, D.: Side-channel attacks: ten years after its publication and the impacts on cryptographic module security testing. IACR Cryptol. ePrint Arch. 2005, 388 (2005). https://dblp.org/rec/journals/iacr/ZhouF05
Zhuang, L., Zhou, F., Tygar, J.D.: Keyboard acoustic emanations revisited. ACM Trans. Inf. Syst. Secur. 13(1), 3:1–3:26 (2009). https://doi.org/10.1145/1609956.1609959
Özgen, E., Papachristodoulou, L., Batina, L.: Template attacks using classification algorithms. In: 2016 IEEE International Symposium on Hardware Oriented Security and Trust (HOST), pp. 242–247 (2016). https://doi.org/10.1109/HST.2016.7495589
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Jovic, A., Jap, D., Papachristodoulou, L., Heuser, A. (2022). Traditional Machine Learning Methods for Side-Channel Analysis. In: Batina, L., Bäck, T., Buhan, I., Picek, S. (eds) Security and Artificial Intelligence. Lecture Notes in Computer Science, vol 13049. Springer, Cham. https://doi.org/10.1007/978-3-030-98795-4_2
Download citation
DOI: https://doi.org/10.1007/978-3-030-98795-4_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-98794-7
Online ISBN: 978-3-030-98795-4
eBook Packages: Computer ScienceComputer Science (R0)