Nothing Special   »   [go: up one dir, main page]

Skip to main content

Incomplete Information and Justifications

  • Conference paper
  • First Online:
Language, Logic, and Computation (TbiLLC 2019)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13206))

Included in the following conference series:

  • 398 Accesses

Abstract

We present a logic for reasoning about higher-order upper and lower probabilities of justification formulas. We provide sound and strongly complete axiomatization for the logic. Furthermore, we show that the introduced logic generalizes the existing probabilistic justification logic \(\mathsf {PPJ}\).

This work was supported by the SNSF project 200021\(\_\)165549 Justifications and non-classical reasoning and by the Serbian Ministry of Education and Science through Mathematical Institute of Serbian Academy of Sciences and Arts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    \(\mathsf {I}\) stands for iterations, \(\mathsf {LUP}\) for lower and upper probabilities and \(\mathsf {J}\) for the justification logic \(\mathsf {J}\).

  2. 2.

    \([A]_{M,w}\) represents the set of all worlds from W(w) in a model M where A holds and will be defined later.

  3. 3.

    When M is clear from the context we will write \([A]_w.\)

References

  1. Anger, B., Lembcke, J.: Infinitely subadditive capacities as upper envelopes of measures. Zeitschrift fur Wahrscheinlichkeitstheorie und Verwandte Gebiete 68, 403–414 (1985)

    Article  MathSciNet  Google Scholar 

  2. Artemov, S., Fitting, S.: Justification Logic: Reasoning with Reasons, Cambridge University Press, New York, June 2019

    Google Scholar 

  3. Artemov, S.N.: Explicit provability and constructive semantics. Bull. Symbol. Logic 7(1), 1–36 (2001)

    Google Scholar 

  4. Artemov, S.: On aggregating probabilistic evidence. In: Artemov, S., Nerode, A. (eds.) LFCS 2016. LNCS, vol. 9537, pp. 27–42. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-27683-0_3

    Chapter  Google Scholar 

  5. Doder, D., Marinković, B., Maksimović, P., Perović, A.: A logic with conditional probability operators. Publications de l’Institut Mathématique 87(101) (2010)

    Google Scholar 

  6. Doder, D., Savić, N., Ognjanović, Z.: Multi-agent logics for reasoning about higher-order upper and lower probabilities. J. Logic Lang. Inf. 1–31 (2019)

    Google Scholar 

  7. Fitting, M.: The logic of proofs, semantically. Ann. Pure Appl. Logic 132(1), 1–25 (2005)

    Google Scholar 

  8. Halpern, J.Y., Pucella, R.: A logic for reasoning about upper probabilities. J. Artif. Intell. Res. 17, 57–81 (2002)

    Article  MathSciNet  Google Scholar 

  9. Kokkinis, I., Maksimović, P., Ognjanović, Z., Studer, T.: First steps towards probabilistic justification logic. Logic J. IGPL 23(4), 662–687 (2015)

    Article  MathSciNet  Google Scholar 

  10. Kokkinis, I., Ognjanović, Z., Studer, T.: Probabilistic justification logic. In: Artemov, S., Nerode, A. (eds.) LFCS 2016. LNCS, vol. 9537, pp. 174–186. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-27683-0_13

    Chapter  Google Scholar 

  11. Kuznets, R., Studer, T.: Weak arithmetical interpretations for the logic of proofs. Logic J. IGP 24(3), 424–440 (2016)

    Article  MathSciNet  Google Scholar 

  12. Kuznets, R., Studer, F.: Logics of Proofs and Justifications. College Publications, London (2019)

    Google Scholar 

  13. Marinkovic, B., Glavan, P., Ognjanovic, Z., Studer, T.: A temporal epistemic logic with a non-rigid set of agents for analyzing the blockchain protocol. J. Log. Comput. 29(5), 803–830 (2019)

    Article  MathSciNet  Google Scholar 

  14. Marinkovic, B., Ognjanovic, Z., Doder, D., Perovic, A.: A propositional linear time logic with time flow isomorphic to \(\omega \)\({}^{\text{2 }}\). J. Appl. Logic 12(2), 208–229 (2014)

    Article  MathSciNet  Google Scholar 

  15. Milnikel, R.S.: The logic of uncertain justifications. Ann. Pure Appl. Logic 165(1), 305–315 (2014)

    Google Scholar 

  16. Ognjanovic, Z., Raskovic, M., Markovic, Z.: Probability Logics - Probability-Based Formalization of Uncertain Reasoning. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47012-2

  17. Ognjanović, Z., Savić, N., Studer, T.: Justification logic with approximate conditional probabilities. In: Baltag, A., Seligman, J., Yamada, T. (eds.) LORI 2017. LNCS, vol. 10455, pp. 681–686. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-55665-8_52

    Chapter  MATH  Google Scholar 

  18. Savić, N., Doder, D., Ognjanović, Z.: Logics with lower and upper probability operators. Int. J. Approx. Reason. 88, 148–168 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgement

We would like to thank the anonymous reviewers whose comments helped to improve the paper substantially.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nenad Savić .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Doder, D., Ognjanović, Z., Savić, N., Studer, T. (2022). Incomplete Information and Justifications. In: Özgün, A., Zinova, Y. (eds) Language, Logic, and Computation. TbiLLC 2019. Lecture Notes in Computer Science, vol 13206. Springer, Cham. https://doi.org/10.1007/978-3-030-98479-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-98479-3_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-98478-6

  • Online ISBN: 978-3-030-98479-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics