Abstract
During the past decade, implementing reconstruction algorithms on hardware has been at the center of much attention in the field of real-time reconstruction in Compressed Sensing (CS). Orthogonal Matching Pursuit (OMP) is the most widely used reconstruction algorithm on hardware implementation because OMP obtains good quality reconstruction results under a proper time cost. OMP includes Dot Product (DP) and Least Square Problem (LSP). These two parts have numerous division calculations and considerable vector-based multiplications, which limit the implementation of real-time reconstruction on hardware. In the theory of CS, besides the reconstruction algorithm, the choice of sensing matrix affects the quality of reconstruction. It also influences the reconstruction efficiency by affecting the hardware architecture. Thus, designing a real-time hardware architecture of OMP needs to take three factors into consideration. The choice of sensing matrix, the implementation of DP and LSP. In this paper, a sensing matrix, which is sparsity and contains zero vectors mainly, is adopted to optimize the OMP reconstruction to break the bottleneck of reconstruction efficiency. Based on the features of the chosen matrix, the DP and LSP are implemented by simple shift, add and comparing procedures. This work is implemented on the Xilinx Virtex UltraScale+ FPGA device. To reconstruct a digital signal with 1024 length under 0.25 sampling rate, the proposal method costs 0.818 \(\upmu \)s while the state-of-the-art costs 238 \(\upmu \)s. Thus, this work speedups the state-of-the-art method 290 times. This work costs 0.026s to reconstruct an 8K gray image, which achieves 30FPS real-time reconstruction.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Change history
20 February 2024
A correction has been published.
References
Bai, L., Maechler, P., Muehlberghuber, M., Kaeslin, H.: High-speed compressed sensing reconstruction on FPGA using OMP and AMP. In: 2012 19th IEEE International Conference on Electronics, Circuits, and Systems (ICECS 2012), pp. 53–56. IEEE (2012)
Blache, P., Rabah, H., Amira, A.: High level prototyping and FPGA implementation of the orthogonal matching pursuit algorithm. In: 2012 11th International Conference on Information Science, Signal Processing and their Applications (ISSPA), pp. 1336–1340. IEEE (2012)
Donoho, D.L.: Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)
Fardad, M., Sayedi, S.M., Yazdian, E.: A low-complexity hardware for deterministic compressive sensing reconstruction. IEEE Trans. Circ. Syst. I Regul. Pap. 65(10), 3349–3361 (2018)
Ge, X., Yang, F., Zhu, H., Zeng, X., Zhou, D.: An efficient FPGA implementation of orthogonal matching pursuit with square-root-free qr decomposition. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 27(3), 611–623 (2018)
Li, J., Chow, P., Peng, Y., Jiang, T.: FPGA implementation of an improved OMP for compressive sensing reconstruction. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 29(2), 259–272 (2020)
Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001, vol. 2, pp. 416–423. IEEE (2001)
Rabah, H., Amira, A., Mohanty, B.K., Almaadeed, S., Meher, P.K.: FPGA implementation of orthogonal matching pursuit for compressive sensing reconstruction. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 23(10), 2209–2220 (2014)
Septimus, A., Steinberg, R.: Compressive sampling hardware reconstruction. In: Proceedings of 2010 IEEE International Symposium on Circuits and Systems, pp. 3316–3319. IEEE (2010)
Stanislaus, J.L., Mohsenin, T.: High performance compressive sensing reconstruction hardware with QRD process. In: 2012 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 29–32. IEEE (2012)
Stanislaus, J.L., Mohsenin, T.: Low-complexity FPGA implementation of compressive sensing reconstruction. In: 2013 International Conference on Computing, Networking and Communications (ICNC), pp. 671–675. IEEE (2013)
Tropp, J.A., Gilbert, A.C.: Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans. Inf. Theory 53(12), 4655–4666 (2007)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this paper
Cite this paper
Xu, J., Fu, C., Zhang, Z., Zhou, J. (2022). Real-Time FPGA Design for OMP Targeting 8K Image Reconstruction. In: Þór Jónsson, B., et al. MultiMedia Modeling. MMM 2022. Lecture Notes in Computer Science, vol 13141. Springer, Cham. https://doi.org/10.1007/978-3-030-98358-1_41
Download citation
DOI: https://doi.org/10.1007/978-3-030-98358-1_41
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-98357-4
Online ISBN: 978-3-030-98358-1
eBook Packages: Computer ScienceComputer Science (R0)