Nothing Special   »   [go: up one dir, main page]

Skip to main content

XQM: Search-Oriented vs. Classifier-Oriented Relevance Feedback on Mobile Phones

  • Conference paper
  • First Online:
MultiMedia Modeling (MMM 2022)

Abstract

In today’s media-rich and mobile-dominated society, an important research direction in multimedia retrieval concerns scaling multimedia interfaces down to mobile phones. We present XQM, an interactive learning app for images on Android mobile phones, with two different interface variants: (a) a search-oriented interface, which emphasises finding a particular image rapidly; and (b) a classifier-oriented interface, which emphasises helping users to build the interactive classifier.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bagi, A.M., Schild, K.I., Khan, O.S., Zahálka, J., Jónsson, B.Þ.: XQM: interactive learning on mobile phones. In: Proceedings of International Conference on MultiMedia Modeling (MMM). Springer, Prague, Czech Republic, pp. 281–293 (2021)

    Google Scholar 

  2. Barthel, K.U., Hezel, N., Schall, K., Jung, K.: Real-time visual navigation in huge image sets using similarity graphs. In: Proceedings of the ACM Multimedia. Nice, France (2019)

    Google Scholar 

  3. Bonis, M.D., Amato, G., Falchi, F., Gennaro, C., Manghi, P.: Deep learning techniques for visual food recognition on a mobile app. In: Choros, K., Kopel, M., Kukla, E., Sieminski, A. (eds.) Proceedings of the International Conference on Multimedia and Network Information Systems (MISSI). Wrocław, Poland, pp. 303–312 (2018)

    Google Scholar 

  4. Chang, C., Lin, C.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2, 1–27 (2011)

    Google Scholar 

  5. Choe, D., Choi, E., Kim, D.K.: The real-time mobile application for classifying of endangered parrot species using the CNN models based on transfer learning. Mobile Inf. Syst. 1–13 (2020)

    Google Scholar 

  6. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)

    MATH  Google Scholar 

  7. Khan, O.S., et al.: Interactive learning for multimedia at large. In: Jose, J., et al. (eds.) Advances in Information Retrieval. ECIR 2020. LNCS, vol. 12035. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45439-5_33

  8. Mettes, P., Koelma, D.C., Snoek, C.G.: The ImageNet shuffle: reorganized pre-training for video event detection. In: Proceedings of ACM International Conference on Multimedia Retrieval, pp. 175–182 (2016)

    Google Scholar 

  9. Pingen, G.L.J., de Boer, M.H.T., Aly, R.B.N.: Rocchio-based relevance feedback in video event retrieval. In: Proceedings of MultiMedia Modeling (MMM), pp. 318–330 (2017)

    Google Scholar 

  10. Samangouei, P., Chellappa, R.: Convolutional neural networks for attribute-based active authentication on mobile devices. In: IEEE International Conference on Biometrics Theory, Applications and Systems (BTAS), pp. 1–8 (2016)

    Google Scholar 

  11. Strezoski, G., Groenen, I., Besenbruch, J., Worring, M.: Artsight: an artistic data exploration engine. In: Proceedings of ACM Multimedia. Seoul, South Korea (2018)

    Google Scholar 

  12. Tran, V., Pham, V., Nguyen, H.: Design a learning model of mobile vision to detect diabetic retinopathy based on the improvement of mobilenetv2. Int. J. Digital Enterprise Technol. (IJDET) (2021)

    Google Scholar 

  13. Tronci, R., Murgia, G., Pili, M., Piras, L., Giacinto, G.: Imagehunter: a novel tool for relevance feedback in content based image retrieval. In: Proceedings of Workshop on New Challenges in Distributed Information Filtering and Retrieval, pp. 53–70 (2013)

    Google Scholar 

  14. Worring, M., Koelma, D., Zahálka, J.: Multimedia pivot tables for multimedia analytics on image collections. IEEE Trans. Multimed. 18(11), 2217–2227 (2016)

    Google Scholar 

  15. Xie, S., Girshick, R., Dollar, P., Tu, Z., He, K.: Aggregated residual transformations for deep neural networks. In: Proceedings of CVPR (2017)

    Google Scholar 

  16. Zahálka, J., Worring, M.: Towards interactive, intelligent, and integrated multimedia analytics. In: Proceedings of IEEE VAST, pp. 3–12 (2014)

    Google Scholar 

  17. Zahálka, J., Worring, M., Van Wijk, J.J.: II-20: intelligent and pragmatic analytic categorization of image collections. IEEE Trans. Visual. Comput. Graph. 27(2), 422–431 (2021)

    Google Scholar 

  18. Zhou, X., Huang, T.: Relevance feedback in image retrieval: a comprehensive review. Multimed. Syst. 8, 536–544 (2003)

    Google Scholar 

Download references

Acknowledgments

This work was supported by a PhD grant from the IT University of Copenhagen, and by the European Regional Development Fund project Robotics for Industry 4.0, CZ.02.1.01/0.0/0.0/15 003/0000470.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Björn Þór Jónsson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Schild, K.I., Bagi, A.M., Mamsen, M.H., Khan, O.S., Zahálka, J., Jónsson, B.Þ. (2022). XQM: Search-Oriented vs. Classifier-Oriented Relevance Feedback on Mobile Phones. In: Þór Jónsson, B., et al. MultiMedia Modeling. MMM 2022. Lecture Notes in Computer Science, vol 13142. Springer, Cham. https://doi.org/10.1007/978-3-030-98355-0_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-98355-0_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-98354-3

  • Online ISBN: 978-3-030-98355-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics