Abstract
In today’s media-rich and mobile-dominated society, an important research direction in multimedia retrieval concerns scaling multimedia interfaces down to mobile phones. We present XQM, an interactive learning app for images on Android mobile phones, with two different interface variants: (a) a search-oriented interface, which emphasises finding a particular image rapidly; and (b) a classifier-oriented interface, which emphasises helping users to build the interactive classifier.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bagi, A.M., Schild, K.I., Khan, O.S., Zahálka, J., Jónsson, B.Þ.: XQM: interactive learning on mobile phones. In: Proceedings of International Conference on MultiMedia Modeling (MMM). Springer, Prague, Czech Republic, pp. 281–293 (2021)
Barthel, K.U., Hezel, N., Schall, K., Jung, K.: Real-time visual navigation in huge image sets using similarity graphs. In: Proceedings of the ACM Multimedia. Nice, France (2019)
Bonis, M.D., Amato, G., Falchi, F., Gennaro, C., Manghi, P.: Deep learning techniques for visual food recognition on a mobile app. In: Choros, K., Kopel, M., Kukla, E., Sieminski, A. (eds.) Proceedings of the International Conference on Multimedia and Network Information Systems (MISSI). Wrocław, Poland, pp. 303–312 (2018)
Chang, C., Lin, C.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2, 1–27 (2011)
Choe, D., Choi, E., Kim, D.K.: The real-time mobile application for classifying of endangered parrot species using the CNN models based on transfer learning. Mobile Inf. Syst. 1–13 (2020)
Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)
Khan, O.S., et al.: Interactive learning for multimedia at large. In: Jose, J., et al. (eds.) Advances in Information Retrieval. ECIR 2020. LNCS, vol. 12035. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45439-5_33
Mettes, P., Koelma, D.C., Snoek, C.G.: The ImageNet shuffle: reorganized pre-training for video event detection. In: Proceedings of ACM International Conference on Multimedia Retrieval, pp. 175–182 (2016)
Pingen, G.L.J., de Boer, M.H.T., Aly, R.B.N.: Rocchio-based relevance feedback in video event retrieval. In: Proceedings of MultiMedia Modeling (MMM), pp. 318–330 (2017)
Samangouei, P., Chellappa, R.: Convolutional neural networks for attribute-based active authentication on mobile devices. In: IEEE International Conference on Biometrics Theory, Applications and Systems (BTAS), pp. 1–8 (2016)
Strezoski, G., Groenen, I., Besenbruch, J., Worring, M.: Artsight: an artistic data exploration engine. In: Proceedings of ACM Multimedia. Seoul, South Korea (2018)
Tran, V., Pham, V., Nguyen, H.: Design a learning model of mobile vision to detect diabetic retinopathy based on the improvement of mobilenetv2. Int. J. Digital Enterprise Technol. (IJDET) (2021)
Tronci, R., Murgia, G., Pili, M., Piras, L., Giacinto, G.: Imagehunter: a novel tool for relevance feedback in content based image retrieval. In: Proceedings of Workshop on New Challenges in Distributed Information Filtering and Retrieval, pp. 53–70 (2013)
Worring, M., Koelma, D., Zahálka, J.: Multimedia pivot tables for multimedia analytics on image collections. IEEE Trans. Multimed. 18(11), 2217–2227 (2016)
Xie, S., Girshick, R., Dollar, P., Tu, Z., He, K.: Aggregated residual transformations for deep neural networks. In: Proceedings of CVPR (2017)
Zahálka, J., Worring, M.: Towards interactive, intelligent, and integrated multimedia analytics. In: Proceedings of IEEE VAST, pp. 3–12 (2014)
Zahálka, J., Worring, M., Van Wijk, J.J.: II-20: intelligent and pragmatic analytic categorization of image collections. IEEE Trans. Visual. Comput. Graph. 27(2), 422–431 (2021)
Zhou, X., Huang, T.: Relevance feedback in image retrieval: a comprehensive review. Multimed. Syst. 8, 536–544 (2003)
Acknowledgments
This work was supported by a PhD grant from the IT University of Copenhagen, and by the European Regional Development Fund project Robotics for Industry 4.0, CZ.02.1.01/0.0/0.0/15 003/0000470.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this paper
Cite this paper
Schild, K.I., Bagi, A.M., Mamsen, M.H., Khan, O.S., Zahálka, J., Jónsson, B.Þ. (2022). XQM: Search-Oriented vs. Classifier-Oriented Relevance Feedback on Mobile Phones. In: Þór Jónsson, B., et al. MultiMedia Modeling. MMM 2022. Lecture Notes in Computer Science, vol 13142. Springer, Cham. https://doi.org/10.1007/978-3-030-98355-0_39
Download citation
DOI: https://doi.org/10.1007/978-3-030-98355-0_39
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-98354-3
Online ISBN: 978-3-030-98355-0
eBook Packages: Computer ScienceComputer Science (R0)