Nothing Special   »   [go: up one dir, main page]

Skip to main content

UlyssesNER-Br: A Corpus of Brazilian Legislative Documents for Named Entity Recognition

  • Conference paper
  • First Online:
Computational Processing of the Portuguese Language (PROPOR 2022)

Abstract

The amount of legislative documents produced within the past decade has risen dramatically, making it difficult for law practitioners to consult and update legislation. Named Entity Recognition (NER) systems have the untapped potential to extract information from legal documents, which can improve information retrieval and decision-making processes. We introduce the UlyssesNER-Br, a corpus of Brazilian Legislative Documents for NER with quality baselines. The presented corpus consists of bills and legislative consultations from Brazilian Chamber of Deputies. We implemented Conditional Random Field (CRF) and Hidden Markov Model (HMM) models, and the promising F1-score of 80.8% in the analysis by categories and 81.04% in the analysis by types, was achieved with the CRF model. The entities with the best average F1-score results were “FUNDlei” and “DATA”, and the ones with the worst results were “EVENTO” and “PESSOAgrupoind”. The corpus was also evaluated using a BiLSTM-CRF and Glove architectures provided by the pioneering state-of-the-art paper, achieving F1-score of 76.89% in the analysis by categories and 59.67% in the analysis by types.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://inception-project.github.io/.

  2. 2.

    https://www.camara.leg.br/buscaProposicoesWeb/.

  3. 3.

    https://sklearn-crfsuite.readthedocs.io/.

  4. 4.

    https://github.com/peluz/lener-br.

  5. 5.

    https://github.com/Convenio-Camara-dos-Deputados/ulyssesner-br-propor.

References

  1. Alles, V.J.: Construção de um corpus para extrair entidades nomeadas do Diário Oficial da União utilizando aprendizado supervisionado. Master’s thesis, Departamento de Engenharia Elétrica, Universidade de Brasília, Brasília, DF (2018)

    Google Scholar 

  2. Almeida, P.G.R.: Uma jornada para um Parlamento inteligente: Câmara dos Deputados do Brasil. Red Información, Edición N\(^{\circ }\) 24 (2021)

    Google Scholar 

  3. Angelidis, I., Chalkidis, I., Koubarakis, M.: Named entity recognition, linking and generation for Greek legislation. In: Proceedings of 31st International Conference on Legal Knowledge and Information Systems, JURIX 2018 (2018)

    Google Scholar 

  4. Badji, I.: Legal entity extraction with NER systems. Master’s thesis, Escuela Técnica Superior de Ingenieros Informáticos, Universidad Politécnica de Madrid (2018)

    Google Scholar 

  5. Brandt M.B.: Modelagem da informação legislativa: arquitetura da informação para o processo legislativo brasileiro. Faculdade de Filosofia e Ciências da Universidade Estadual Paulista (UNESP) (2020)

    Google Scholar 

  6. Castro, P.V.Q.: Aprendizagem profunda para reconhecimento de entidades nomeadas em domínio jurídico. Masters thesis, Programa de Pós-graduação em Ciência da Computação, Universidade Federal de Goiás (2019)

    Google Scholar 

  7. Klie, J.C., Bugert, M., Boullosa, B., Eckart de Castilho, R., Gurevych, I.: The INCEpTION platform: machine-assisted and knowledge-oriented interactive annotation. In: Proceedings of the 27th International Conference on Computational Linguistics: System Demonstrations, COLING 2018 (2018)

    Google Scholar 

  8. Lafferty, J.; McCallum, A., Pereira, F.: Conditional random fields: probabilistic models for segmenting and labeling sequence data. In: Proceedings of the 18th International Conference on Machine Learning (2001)

    Google Scholar 

  9. Leitner, E.; Rehm, G.; Moreno-Schneider, J.: A dataset of German legal documents for named entity recognition. In: LREC 2020–12th International Conference on Language Resources and Evaluation, Conference Proceedings (2020)

    Google Scholar 

  10. Li, J.; Sun, A.; Han, J.; Li, C.: A survey on deep learning for named entity recognition. In: IEEE Transactions on Knowledge and Data Engineering (2020)

    Google Scholar 

  11. Loper, E., Bird, S.: NLTK: The Natural Language Toolkit (2002)

    Google Scholar 

  12. Luz de Araujo, P.H., Campos, T.E., Braz, F.A., Silva, N.C.: VICTOR: a dataset for Brazilian legal documents classification. In: Proceedings of the 12th Conference on Language Resources and Evaluation (LREC 2020), Marseille (2020)

    Google Scholar 

  13. Luz de Araujo, P.H., de Campos, T.E., de Oliveira, R.R.R., Stauffer, M., Couto, S., Bermejo, P.: LeNER-Br: A Dataset for Named Entity Recognition in Brazilian Legal Text. In: Villavicencio, A., et al. (eds.) PROPOR 2018. LNCS (LNAI), vol. 11122, pp. 313–323. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99722-3_32

    Chapter  Google Scholar 

  14. Maxwell, K.T., Schafer, B.: Concept and context in legal information retrieval. Front. Artif. Intell. Appl. 189, 63–72 (2008)

    Google Scholar 

  15. Nadeau, D., Sekine, S.: A survey of named entity recognition and classification. Lingvisticae Investigationes 30(1), 3–26 (2007)

    Article  Google Scholar 

  16. Pirovani, J. P. C.: CRF+LG: uma abordagem híbrida para o reconhecimento de entidades nomeadas em português. PhD thesis, Universidade Federal do Espírito Santo (2019)

    Google Scholar 

  17. Quaresma, P., Gonçalves, T.: Using linguistic information and machine learning techniques to identify entities from juridical documents. In: Francesconi, E., Montemagni, S., Peters, W., Tiscornia, D. (eds.) Semantic Processing of Legal Texts. LNCS (LNAI), vol. 6036, pp. 44–59. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12837-0_3

    Chapter  Google Scholar 

  18. Santos, D., Cardoso, N.: A golden resource for named entity recognition in Portuguese. In: Vieira, R., Quaresma, P., Nunes, M.G.V., Mamede, N.J., Oliveira, C., Dias, M.C. (eds.) PROPOR 2006. LNCS (LNAI), vol. 3960, pp. 69–79. Springer, Heidelberg (2006). https://doi.org/10.1007/11751984_8

    Chapter  Google Scholar 

  19. Váradi, T., et al.: The MARCELL legislative corpus. In: Proceedings of the 12th Language Resources and Evaluation Conference. European Language Resources Association (2020)

    Google Scholar 

Download references

Acknowledgements

This research is carried out in the context of the Ulysses Project, of the Brazilian Chamber of Deputies. Ellen Souza and Nadia Félix are supported by FAPESP , agreement between USP and the Brazilian Chamber of Deputies. André C. P. L. F. de Carvalho and Adriano L. I. Oliveira are supported by CNPq. To the Brazilian Chamber of Deputies and to research funding agencies, to which we express our gratitude for supporting the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hidelberg O. Albuquerque .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Albuquerque, H.O. et al. (2022). UlyssesNER-Br: A Corpus of Brazilian Legislative Documents for Named Entity Recognition. In: Pinheiro, V., et al. Computational Processing of the Portuguese Language. PROPOR 2022. Lecture Notes in Computer Science(), vol 13208. Springer, Cham. https://doi.org/10.1007/978-3-030-98305-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-98305-5_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-98304-8

  • Online ISBN: 978-3-030-98305-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics