Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Multiscale Fatigue Model for the Degradation of Fiber-Reinforced Materials

  • Conference paper
  • First Online:
Large-Scale Scientific Computing (LSSC 2021)

Abstract

Short-fiber reinforced materials show material degradation under fatigue loading prior to failure. To investigate these effects, we model the constituents by an isotropic fatigue damage model for the matrix material and isotropic linear-elastic material model for the fibers. On the microscale we compute the overall material response for cell problems with different fiber orientation states with FFT-based methods. We discuss a concept to model order reduction, that enables us to apply the model efficiently on component scale.

MS acknowledges financial support of the German Research Foundation (DFG) within the International Research Training Group “Integrated engineering of continuous-discontinuous long fiber reinforced polymer structures” (GRK 2078).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Shresthaa, R., Simsiriwongb, J., Shamsaeia, N., Moser, R.: Cyclic deformation and fatigue behavior of polyether ether ketone, viscoplasticity and ductile damage. Int. J. Fatigue 60, 411–427 (2016)

    Article  Google Scholar 

  2. Drozdov, A.D.: Cyclic strengthening of polypropylene under strain-controlled loading, viscoplasticity and ductile damage. Mater. Sci. Eng. A 528, 8781–8789 (2011)

    Article  Google Scholar 

  3. Avanzini, A.: Mechanical characterization and finite element modelling of cyclic stress-strain behaviour of ultra high molecular weight polyethylene, viscoplasticity and ductile damage. Mater. Des. 29, 330–343 (2007)

    Article  Google Scholar 

  4. Klimkeit, B., et al.: Fatigue damage mechanisms in short fiber reinforced PBT+PET GF30. Mater. Sci. Eng. A 528, 1577–1588 (2011)

    Article  Google Scholar 

  5. Krairi, A.: Multiscale modeling of the damage and failure of homogeneous and shortfiber reinforced thermoplastics under monotonic and fatigue loadings, Prom.: Doghri, I., Université catholique de Louvain (2015)

    Google Scholar 

  6. Chebbi, E., Mars, J., Wali, M., Dammak, F.: Fatigue behavior of short glass fiber reinforced polyamide 66: experimental study and fatigue damage modelling. Period. Polytech. Mech. Eng. 60(4), 247–255 (2016)

    Article  Google Scholar 

  7. Köbler, J., Magino, N., Andrä, H., Welschinger, F., Müller, R., Schneider, M.: A computational multi-scale model for the stiffness degradation of short-fiber reinforced plastics subjected to fatigue loading. Comput. Methods Appl. Mech. Eng. 373, 113522 (2021)

    Google Scholar 

  8. Magino, N., Köbler, J., Andrä, H., Welschinger, F., Müller, R., Schneider, M.: A multiscale high-cycle fatigue-damage model for the stiffness degradation of fiber-reinforced materials based on a mixed variational framework. Comput. Methods Appl. Mech. Eng. 388, 114198 (2021)

    Google Scholar 

  9. Michel, J.-C., Suquet, P.: Nonuniform transformation field analysis. Int. J. Solids Struct. 40, 6937–6955 (2003)

    Article  MathSciNet  Google Scholar 

  10. Fritzen, F., Böhlke, T.: Three-dimensional finite element implementation of the nonuniform transformation field analysis. Numer. Methods Eng. 84, 803–829 (2010)

    Article  MathSciNet  Google Scholar 

  11. Halphen, B., Nguyen, Q.S.: Sur les matériaux standards generalisés. J. de Mécanique 14, 508–520 (1975)

    MATH  Google Scholar 

  12. Ortiz, M., Stainier, L.: The variational formulation of viscoplastic constitutive updates. Comput. Methods Appl. Mech. Eng. 171, 419–444 (1999)

    Article  MathSciNet  Google Scholar 

  13. Miehe, C.: Strain-driven homogenization of inelastic microstructures and composites based on an incremental variational formulation. Int. J. Numer. Meth. Eng. 55, 1285–1322 (2002)

    Article  MathSciNet  Google Scholar 

  14. Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces. CMS Books in Mathematics, Springer, New York (2017). https://doi.org/10.1007/978-1-4419-9467-7

    Book  MATH  Google Scholar 

  15. Schneider, M.: The sequential addition and migration method to generate representative volume elements for the homogenization of short fiber reinforced plastics. Comput. Mech. 59, 247–263 (2017)

    Article  MathSciNet  Google Scholar 

  16. Schneider, M.: A dynamical view of nonlinear conjugate gradient methods with applications to FFT-based computational micromechanics. Comput. Mech. 66(1), 239–257 (2020). https://doi.org/10.1007/s00466-020-01849-7

    Article  MathSciNet  MATH  Google Scholar 

  17. Schneider, M., Ospald, F., Kabel, M.: Computational homogenization of elasticity on a staggered grid. Int. J. Numer. Meth. Eng. 105(9), 693–720 (2016)

    Article  MathSciNet  Google Scholar 

  18. Hintermüller, M., Ito, K., Kunisch, K.: The primal-dual active set method as a semismooth Newton method. SIAM J. Optim. 13, 865–888 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Andrä .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Magino, N., Köbler, J., Andrä, H., Welschinger, F., Müller, R., Schneider, M. (2022). A Multiscale Fatigue Model for the Degradation of Fiber-Reinforced Materials. In: Lirkov, I., Margenov, S. (eds) Large-Scale Scientific Computing. LSSC 2021. Lecture Notes in Computer Science, vol 13127. Springer, Cham. https://doi.org/10.1007/978-3-030-97549-4_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-97549-4_44

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-97548-7

  • Online ISBN: 978-3-030-97549-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics