Abstract
Short-fiber reinforced materials show material degradation under fatigue loading prior to failure. To investigate these effects, we model the constituents by an isotropic fatigue damage model for the matrix material and isotropic linear-elastic material model for the fibers. On the microscale we compute the overall material response for cell problems with different fiber orientation states with FFT-based methods. We discuss a concept to model order reduction, that enables us to apply the model efficiently on component scale.
MS acknowledges financial support of the German Research Foundation (DFG) within the International Research Training Group “Integrated engineering of continuous-discontinuous long fiber reinforced polymer structures” (GRK 2078).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Shresthaa, R., Simsiriwongb, J., Shamsaeia, N., Moser, R.: Cyclic deformation and fatigue behavior of polyether ether ketone, viscoplasticity and ductile damage. Int. J. Fatigue 60, 411–427 (2016)
Drozdov, A.D.: Cyclic strengthening of polypropylene under strain-controlled loading, viscoplasticity and ductile damage. Mater. Sci. Eng. A 528, 8781–8789 (2011)
Avanzini, A.: Mechanical characterization and finite element modelling of cyclic stress-strain behaviour of ultra high molecular weight polyethylene, viscoplasticity and ductile damage. Mater. Des. 29, 330–343 (2007)
Klimkeit, B., et al.: Fatigue damage mechanisms in short fiber reinforced PBT+PET GF30. Mater. Sci. Eng. A 528, 1577–1588 (2011)
Krairi, A.: Multiscale modeling of the damage and failure of homogeneous and shortfiber reinforced thermoplastics under monotonic and fatigue loadings, Prom.: Doghri, I., Université catholique de Louvain (2015)
Chebbi, E., Mars, J., Wali, M., Dammak, F.: Fatigue behavior of short glass fiber reinforced polyamide 66: experimental study and fatigue damage modelling. Period. Polytech. Mech. Eng. 60(4), 247–255 (2016)
Köbler, J., Magino, N., Andrä, H., Welschinger, F., Müller, R., Schneider, M.: A computational multi-scale model for the stiffness degradation of short-fiber reinforced plastics subjected to fatigue loading. Comput. Methods Appl. Mech. Eng. 373, 113522 (2021)
Magino, N., Köbler, J., Andrä, H., Welschinger, F., Müller, R., Schneider, M.: A multiscale high-cycle fatigue-damage model for the stiffness degradation of fiber-reinforced materials based on a mixed variational framework. Comput. Methods Appl. Mech. Eng. 388, 114198 (2021)
Michel, J.-C., Suquet, P.: Nonuniform transformation field analysis. Int. J. Solids Struct. 40, 6937–6955 (2003)
Fritzen, F., Böhlke, T.: Three-dimensional finite element implementation of the nonuniform transformation field analysis. Numer. Methods Eng. 84, 803–829 (2010)
Halphen, B., Nguyen, Q.S.: Sur les matériaux standards generalisés. J. de Mécanique 14, 508–520 (1975)
Ortiz, M., Stainier, L.: The variational formulation of viscoplastic constitutive updates. Comput. Methods Appl. Mech. Eng. 171, 419–444 (1999)
Miehe, C.: Strain-driven homogenization of inelastic microstructures and composites based on an incremental variational formulation. Int. J. Numer. Meth. Eng. 55, 1285–1322 (2002)
Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces. CMS Books in Mathematics, Springer, New York (2017). https://doi.org/10.1007/978-1-4419-9467-7
Schneider, M.: The sequential addition and migration method to generate representative volume elements for the homogenization of short fiber reinforced plastics. Comput. Mech. 59, 247–263 (2017)
Schneider, M.: A dynamical view of nonlinear conjugate gradient methods with applications to FFT-based computational micromechanics. Comput. Mech. 66(1), 239–257 (2020). https://doi.org/10.1007/s00466-020-01849-7
Schneider, M., Ospald, F., Kabel, M.: Computational homogenization of elasticity on a staggered grid. Int. J. Numer. Meth. Eng. 105(9), 693–720 (2016)
Hintermüller, M., Ito, K., Kunisch, K.: The primal-dual active set method as a semismooth Newton method. SIAM J. Optim. 13, 865–888 (2003)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this paper
Cite this paper
Magino, N., Köbler, J., Andrä, H., Welschinger, F., Müller, R., Schneider, M. (2022). A Multiscale Fatigue Model for the Degradation of Fiber-Reinforced Materials. In: Lirkov, I., Margenov, S. (eds) Large-Scale Scientific Computing. LSSC 2021. Lecture Notes in Computer Science, vol 13127. Springer, Cham. https://doi.org/10.1007/978-3-030-97549-4_44
Download citation
DOI: https://doi.org/10.1007/978-3-030-97549-4_44
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-97548-7
Online ISBN: 978-3-030-97549-4
eBook Packages: Computer ScienceComputer Science (R0)