Abstract
The future Quantum Internet is expected to be based on a hybrid architecture with core quantum transport capabilities complemented by conventional networking. Practical and foundational considerations indicate the need for conventional control and data planes that (i) utilize extensive existing telecommunications fiber infrastructure, and (ii) provide parallel conventional data channels needed for quantum networking protocols. We propose a quantum-conventional network (QCN) harness to implement a new architecture to meet these requirements. The QCN control plane carries the control and management traffic, whereas its data plane handles the conventional and quantum data communications. We established a local area QCN connecting three quantum laboratories over dedicated fiber and conventional network connections. We describe considerations and tradeoffs for layering QCN functionalities, informed by our recent quantum entanglement distribution experiments conducted over this network.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Open Newtorking Foundation. SDN Architecture Overview (2013). https://opennetworking.org/wp-content/uploads/2013/02/SDN-architecture-overview-1.0.pdf
IEEE-SA Standards Board. IEEE Standard for a Precision Clock Synchronization Protocol for Networked Measurement and Control Systems. IEEE Std 1588-2008 (2008). https://standards.ieee.org/ieee/1588/4355/
Aguado, A., López, V., Brito, J.P., Pastor, A., López, D.R., Martin, V.: Enabling quantum key distribution networks via software-defined networking. In: 2020 International Conference on Optical Network Design and Modeling (ONDM), pp. 1–5. IEEE (2020). https://doi.org/10.23919/ONDM48393.2020.9133024
Alshowkan, M., Elleithy, K.: Quantum entanglement distribution for secret key establishment in metropolitan optical networks. IEEE International Conference on Networking, Architecture and Storage, pp. 1–8 (2016). https://doi.org/10.1109/NAS.2016.7549416
Alshowkan, M., et al.: Reconfigurable quantum local area network over deployed fiber. PRX Quantum 2, 040304 (2021). https://doi.org/10.1103/PRXQuantum.2.040304
Appas, F., et al.: Flexible entanglement-distribution network with an ALGaAs chip for secure communications. npj Quantum Inf. 7, 118 (2021). https://doi.org/10.1038/s41534-021-00454-7
Barz, S., Kashefi, E., Broadbent, A., Fitzsimons, J.F., Zeilinger, A., Walther, P.: Demonstration of blind quantum computing. Science 335(6066), 303–308 (2012). https://doi.org/10.1126/science.1214707
Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. Theor. Comput. Sci. 560, 7–11 (2014). https://doi.org/10.1016/j.tcs.2014.05.025
Bollinger, J.J., Itano, W.M., Wineland, D.J., Heinzen, D.J.: Optimal frequency measurements with maximally correlated states. Phys. Rev. A 54, R4649–R4652 (1996). https://doi.org/10.1103/PhysRevA.54.R4649
Braden, R.: Requirements for internet hosts - communication layers. RFC 1122 (1989). https://datatracker.ietf.org/doc/html/rfc1122
Broadbent, A., Fitzsimons, J., Kashefi, E.: Universal blind quantum computation. In: Proceedings of the 50th Annual IEEE Symposium on Foundations of Computer Science, pp. 517–526 (2009). https://doi.org/10.1109/focs.2009.36
Cerf, V., Kahn, R.: A protocol for packet network intercommunication. IEEE Trans. Commun. 22(5), 637–648 (1974). https://doi.org/10.1109/TCOM.1974.1092259
Chapuran, T.E., et al.: Optical networking for quantum key distribution and quantum communications. New J. Phys. 11(10), 105001 (2009). https://doi.org/10.1088/1367-2630/11/10/105001
Chen, T.Y., et al.: Metropolitan all-pass and inter-city quantum communication network. Opt. Express 18(26), 27217–27225 (2010). https://doi.org/10.1364/OE.18.027217
Cirac, J.I., Ekert, A.K., Huelga, S.F., Macchiavello, C.: Distributed quantum computation over noisy channels. Phys. Rev. A 59, 4249–4254 (1999). https://doi.org/10.1103/PhysRevA.59.4249
Ciurana, A., Martin, V., Martinez-Mateo, J., Schrenk, B., Peev, M., Poppe, A.: Entanglement distribution in optical networks. IEEE J. Sel. Top. Quantum Electron. 21(3), 37–48 (2015). https://doi.org/10.1109/JSTQE.2014.2367241
Dynes, J.F., et al.: Cambridge quantum network. npj Quantum Inf. 5(1), 101 (2019). https://doi.org/10.1038/s41534-019-0221-4
Elliott, C.: Building the quantum network. New J. Phys. 4, 46 (2002). https://doi.org/10.1088/1367-2630/4/1/346
Evans, P., et al.: Demonstration of a quantum key distribution trusted node on an electric utility fiber network. In: IEEE Photonics Conference, p. 8908470 (2019). https://doi.org/10.1109/ipcon.2019.8908470
Feamster, N., Rexford, J., Zegura, E.: The road to SDN. ACM SIGCOMM Comp. Commun. Rev. 44(2), 87–98 (2014). https://doi.org/10.1145/2602204.2602219
Giovannetti, V.: Quantum-enhanced measurements: beating the standard quantum limit. Science 306(5700), 1330–1336 (2004). https://doi.org/10.1126/science.1104149
Giovannetti, V., Lloyd, S., Maccone, L.: Advances in quantum metrology. Nat. Photon. 5(4), 222–229 (2011). https://doi.org/10.1038/nphoton.2011.35
Gisin, N., Thew, R.: Quantum communication. Nat. Photon. 1(3), 165–171 (2007). https://doi.org/10.1038/nphoton.2007.22
Hughes, R.J., et al.: A quantum key distribution system for optical fiber networks. Proc. SPIE 5893, 589301 (2005). https://doi.org/10.1117/12.615594
Humble, T.S., Sadlier, R.J., Williams, B.P., Prout, R.C.: Software-defined quantum network switching. Proc. SPIE 10652, 72–79 (2018). https://doi.org/10.1117/12.2303800
Joshi, S.K.: A trusted node–free eight-user metropolitan quantum communication network. Sci. Adv. 6(36), eaba0959 (2020). https://doi.org/10.1126/sciadv.aba0959
Khabiboulline, E.T., Borregaard, J., De Greve, K., Lukin, M.D.: Optical interferometry with quantum networks. Phys. Rev. Lett. 123(7), 070504 (2019). https://doi.org/10.1103/PhysRevLett.123.070504
Khabiboulline, E.T., Borregaard, J., De Greve, K., Lukin, M.D.: Quantum-assisted telescope arrays. Phys. Rev. A 100(2), 022316 (2019). https://doi.org/10.1103/PhysRevA.100.022316
Kimble, H.J.: The quantum internet. Nature 453(7198), 1023–1030 (2008). https://doi.org/10.1038/nature07127
Krenn, M., Handsteiner, J., Fink, M., Fickler, R., Zeilinger, A.: Twisted photon entanglement through turbulent air across Vienna. PNAS 112(46), 14197–14201 (2015). https://doi.org/10.1073/pnas.1517574112
Lim, H.C., Yoshizawa, A., Tsuchida, H., Kikuchi, K.: Wavelength-multiplexed distribution of highly entangled photon-pairs over optical fiber. Opt. Express 16(26), 22099 (2008). https://doi.org/10.1364/oe.16.022099
Lingaraju, N.B., Lu, H.H., Seshadri, S., Leaird, D.E., Weiner, A.M., Lukens, J.M.: Adaptive bandwidth management for entanglement distribution in quantum networks. Optica 8(3), 329–332 (2021). https://doi.org/10.1364/OPTICA.413657
Lipiński, M., Włostowski, T., Serrano, J., Alvarez, P.: White rabbit: a PTP application for robust sub-nanosecond synchronization. In: IEEE International Symposium on Precision Clock Synchronization for Measurement, Control and Communication, pp. 25–30 (2011). https://doi.org/10.1109/ISPCS.2011.6070148
Lukens, J.M., Law, K.J.H., Jasra, A., Lougovski, P.: A practical and efficient approach for Bayesian quantum state estimation. New J. Phys. 22(6), 063038 (2020). https://doi.org/10.1088/1367-2630/ab8efa
Mao, Y., et al.: Integrating quantum key distribution with classical communications in backbone fiber network. Opt. Express 26(5), 6010 (2018). https://doi.org/10.1364/oe.26.006010
McKeown, N., et al.: OpenFlow. ACM SIGCOMM Comput. Commun. Rev. 38(2), 69–74 (2008). https://doi.org/10.1145/1355734.1355746
On-demand secure circuits and advance reservation system (OSCARS). http://www.es.net/oscars
Peev, M., et al.: The SECOQC quantum key distribution network in Vienna. New J. Phys. 11(7), 075001 (2009). https://doi.org/10.1088/1367-2630/11/7/075001
Peloso, M.P., Gerhardt, I., Ho, C., Lamas-Linares, A., Kurtsiefer, C.: Daylight operation of a free space, entanglement-based quantum key distribution system. New J. Phys. 11(4), 045007 (2009). https://doi.org/10.1088/1367-2630/11/4/045007
Rao, N.S.V., Humble, T.: Control plane and virtualized development environment for softwarized quantum networks. In: DOE ASCR Quantum Networks for Open Science Workshop (2018). https://www.osti.gov/biblio/1468059
Rao, N., Wing, W., Carter, S., Wu, Q.: Ultrascience net: network testbed for large-scale science applications. IEEE Commun. Mag. 43(11), S12–S17 (2005). https://doi.org/10.1109/MCOM.2005.1541694
Runser, R.J., et al.: Progress toward quantum communications networks: opportunities and challenges. Proc. SPIE 6476, 147–161 (2007). https://doi.org/10.1117/12.708669
Sasaki, M., et al.: Field test of quantum key distribution in the Tokyo QKD network. Opt. Express 19(11), 10387–10409 (2011). https://doi.org/10.1364/OE.19.010387
Scarani, V., Bechmann-Pasquinucci, H., Cerf, N.J., Dušek, M., Lütkenhaus, N., Peev, M.: The security of practical quantum key distribution. Rev. Mod. Phys. 81, 1301–1350 (2009). https://doi.org/10.1103/RevModPhys.81.1301
Shi, Y., Moe Thar, S., Poh, H.S., Grieve, J.A., Kurtsiefer, C., Ling, A.: Stable polarization entanglement based quantum key distribution over a deployed metropolitan fiber. Appl. Phys. Lett. 117(12), 124002 (2020). https://doi.org/10.1063/5.0021755
Steinlechner, F., et al.: Distribution of high-dimensional entanglement via an intra-city free-space link. Nat. Commun. 8(1), 15971 (2017). https://doi.org/10.1038/ncomms15971
Stucki, D., et al.: Long-term performance of the SwissQuantum quantum key distribution network in a field environment. New J. Phys. 13(12), 123001 (2011). https://doi.org/10.1088/1367-2630/13/12/123001
Townsend, P.D.: Quantum cryptography on multiuser optical fibre networks. Nature 385(6611), 47–49 (1997). https://doi.org/10.1038/385047a0
Vidal, G., Werner, R.F.: Computable measure of entanglement. Phys. Rev. A 65, 032314 (2002). https://doi.org/10.1103/PhysRevA.65.032314
Wang, S., et al.: Field and long-term demonstration of a wide area quantum key distribution network. Opt. Express 22(18), 21739–21756 (2014). https://doi.org/10.1364/OE.22.021739
Wengerowsky, S., Joshi, S.K., Steinlechner, F., Hubel, H., Ursin, R.: An entanglement-based wavelength-multiplexed quantum communication network. Nature 564(7735), 225–228 (2018). https://doi.org/10.1038/s41586-018-0766-y
Wengerowsky, S., et al.: Entanglement distribution over a 96-km-long submarine optical fiber. PNAS 116(14), 6684–6688 (2019). https://doi.org/10.1073/pnas.1818752116
Wootters, W.K., Zurek, W.H.: A single quantum cannot be cloned. Nature 299(5886), 802–803 (1982). https://doi.org/10.1038/299802a0
Acknowledgments
This research used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725. This research is supported by the U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research, through the Early Career Research Program and Transparent Optical Quantum Networks for Distributed Science Program (Field Work Proposals ERKJ353 and ERKJ355).
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this paper
Cite this paper
Alshowkan, M. et al. (2022). Lessons Learned on the Interface Between Quantum and Conventional Networking. In: Nichols, J., et al. Driving Scientific and Engineering Discoveries Through the Integration of Experiment, Big Data, and Modeling and Simulation. SMC 2021. Communications in Computer and Information Science, vol 1512. Springer, Cham. https://doi.org/10.1007/978-3-030-96498-6_15
Download citation
DOI: https://doi.org/10.1007/978-3-030-96498-6_15
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-96497-9
Online ISBN: 978-3-030-96498-6
eBook Packages: Computer ScienceComputer Science (R0)