Nothing Special   »   [go: up one dir, main page]

Skip to main content

Detecting Alzheimer’s Disease Using Machine Learning Methods

  • Conference paper
  • First Online:
Body Area Networks. Smart IoT and Big Data for Intelligent Health Management (BODYNETS 2021)

Abstract

As the world is experiencing population growth, the portion of the older people, aged 65 and above, is also growing at a faster rate. As a result, the dementia with Alzheimer’s disease is expected to increase rapidly in the next few years. Currently, healthcare systems require an accurate detection of the disease for its treatment and prevention. Therefore, it has become essential to develop a framework for early detection of Alzheimer’s disease to avoid complications. To this end, a novel framework, based on machine-learning (ML) and deep-learning (DL) methods, is proposed to detect Alzheimer’s disease. In particular, the performance of different ML and DL algorithms has been evaluated against their detection accuracy. The experimental results state that bidirectional long short-term memory (BiLSTM) outperforms the ML methods with a detection accuracy of 91.28%. Furthermore, the comparison with the state-of-the-art indicates the superiority of the our framework over the other proposed approaches in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Adeel, A., Gogate, M., Hussain, A.: Contextual deep learning-based audio-visual switching for speech enhancement in real-world environments. Inf. Fusion 59, 163–170 (2020)

    Article  Google Scholar 

  2. Ahmed, R., et al.: Deep neural network-based contextual recognition of Arabic handwritten scripts. Entropy 23(3), 340 (2021)

    Article  Google Scholar 

  3. Alqarafi, A.S., Adeel, A., Gogate, M., Dashitpour, K., Hussain, A., Durrani, T.: Toward’s Arabic multi-modal sentiment analysis. In: Liang, Q., Mu, J., Jia, M., Wang, W., Feng, X., Zhang, B. (eds.) CSPS 2017. LNEE, vol. 463, pp. 2378–2386. Springer, Singapore (2019). https://doi.org/10.1007/978-981-10-6571-2_290

    Chapter  Google Scholar 

  4. Ammar, R.B., Ayed, Y.B.: Speech processing for early alzheimer disease diagnosis: machine learning based approach. In: 2018 IEEE/ACS 15th International Conference on Computer Systems and Applications (AICCSA), pp. 1–8. IEEE (2018)

    Google Scholar 

  5. Asad, S.M., et al.: Mobility management-based autonomous energy-aware framework using machine learning approach in dense mobile networks. Signals 1(2), 170–187 (2020)

    Article  Google Scholar 

  6. Asad, S.M., Dashtipour, K., Hussain, S., Abbasi, Q.H., Imran, M.A.: Travelers-tracing and mobility profiling using machine learning in railway systems. In 2020 International Conference on UK-China Emerging Technologies (UCET), pp. 1–4. IEEE (2020)

    Google Scholar 

  7. Casanova, R., et al.: Alzheimer’s disease risk assessment using large-scale machine learning methods. PloS One 8(11), e77949 (2013)

    Article  Google Scholar 

  8. Churcher, A., et al.: An experimental analysis of attack classification using machine learning in IoT networks. Sensors 21(2), 446 (2021)

    Article  Google Scholar 

  9. Dashtipour, K., Gogate, M., Adeel, A., Algarafi, A., Howard, N., Hussain, A.: Persian named entity recognition. In: 2017 IEEE 16th International Conference on Cognitive Informatics and Cognitive Computing (ICCI* CC), pp. 79–83. IEEE (2017)

    Google Scholar 

  10. Dashtipour, K., Gogate, M., Adeel, A., Hussain, A., Alqarafi, A., Durrani, T.: A comparative study of Persian sentiment analysis based on different feature combinations. In: Liang, Q., Mu, J., Jia, M., Wang, W., Feng, X., Zhang, B. (eds.) CSPS 2017. LNEE, vol. 463, pp. 2288–2294. Springer, Singapore (2019). https://doi.org/10.1007/978-981-10-6571-2_279

    Chapter  Google Scholar 

  11. Dashtipour, K., Gogate, M., Adeel, A., Ieracitano, C., Larijani, H., Hussain, A.: Exploiting deep learning for Persian sentiment analysis. In: Ren, J., et al. (eds.) BICS 2018. LNCS (LNAI), vol. 10989, pp. 597–604. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00563-4_58

    Chapter  Google Scholar 

  12. Dashtipour, K., Gogate, M., Adeel, A., Larijani, H., Hussain, A.: Sentiment analysis of Persian movie reviews using deep learning. Entropy 23(5), 596 (2021)

    Article  Google Scholar 

  13. Dashtipour, K., Gogate, M., Cambria, E., Hussain, A.: A novel context-aware multimodal framework for persian sentiment analysis. arXiv preprint arXiv:2103.02636 (2021)

  14. Dashtipour, K., Gogate, M., Li, J., Jiang, F., Kong, B., Hussain, A.: A hybrid Persian sentiment analysis framework: integrating dependency grammar based rules and deep neural networks. Neurocomputing 380, 1–10 (2020)

    Article  Google Scholar 

  15. Dashtipour, K., Hussain, A., Gelbukh, A.: Adaptation of sentiment analysis techniques to Persian language. In: Gelbukh, A. (ed.) CICLing 2017, Part II. LNCS, vol. 10762, pp. 129–140. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-77116-8_10

    Chapter  Google Scholar 

  16. Dashtipour, K., Hussain, A., Zhou, Q., Gelbukh, A., Hawalah, A.Y.A., Cambria, E.: PerSent: a freely available Persian sentiment Lexicon. In: Liu, C.-L., Hussain, A., Luo, B., Tan, K.C., Zeng, Y., Zhang, Z. (eds.) BICS 2016. LNCS (LNAI), vol. 10023, pp. 310–320. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49685-6_28

    Chapter  Google Scholar 

  17. Dashtipour, K., et al.: Multilingual sentiment analysis: state of the art and independent comparison of techniques. Cogn. Comput. 8(4), 757–771 (2016)

    Article  Google Scholar 

  18. Dashtipour, K., Raza, A., Gelbukh, A., Zhang, R., Cambria, E., Hussain, A.: PerSent 2.0: Persian sentiment Lexicon enriched with domain-specific words. In: Ren, J., et al. (eds.) BICS 2019. LNCS (LNAI), vol. 11691, pp. 497–509. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-39431-8_48

    Chapter  Google Scholar 

  19. Dashtipour, K., et al.: Public perception towards fifth generation of cellular networks (5G) on social media. Frontiers in Big Data (2021)

    Google Scholar 

  20. Dyrba, M., et al.: Robust automated detection of microstructural white matter degeneration in Alzheimer’s disease using machine learning classification of multicenter dti data. PloS One 8(5), e64925 (2013)

    Article  Google Scholar 

  21. D’Andrea, M.R., Cole, G.M., Ard, M.D.: The microglial phagocytic role with specific plaque types in the alzheimer disease brain. Neurobiol. Aging 25(5), 675–683 (2004)

    Article  Google Scholar 

  22. Escudero, J., et al.: Machine learning-based method for personalized and cost-effective detection of alzheimer’s disease. IEEE Trans. Biomed. Eng. 6(1), 164–168 (2012)

    Article  Google Scholar 

  23. Gepperth, A.R.T., Hecht, T., Gogate, M.: A generative learning approach to sensor fusion and change detection. Cogn. Comput. 8(5), 806–817 (2016). https://doi.org/10.1007/s12559-016-9390-z

    Article  Google Scholar 

  24. Gogate, M., Adeel, A., Hussain, A.: Deep learning driven multimodal fusion for automated deception detection. In: 2017 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 1–6. IEEE (2017)

    Google Scholar 

  25. Gogate, M., Adeel, A., Hussain, A.: A novel brain-inspired compression-based optimised multimodal fusion for emotion recognition. In: 2017 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 1–7. IEEE (2017)

    Google Scholar 

  26. Gogate, M., Adeel, A., Marxer, R., Barker, J., Hussain, A.: DNN driven speaker independent audio-visual mask estimation for speech separation. arXiv preprint arXiv:1808.00060 (2018)

  27. Gogate, M., Dashtipour, K., Adeel, A., Hussain, A.: CochleaNet: a robust language-independent audio-visual model for real-time speech enhancement. Inf. Fusion 63, 273–285 (2020)

    Article  Google Scholar 

  28. Gogate, M., Dashtipour, K., Hussain, A.: Visual speech in real noisy environments (vision): a novel benchmark dataset and deep learning-based baseline system. In: Proceedings of the Interspeech 2020, pp. 4521–4525 (2020)

    Google Scholar 

  29. Gogate, M., Hussain, A., Huang, K.: Random features and random neurons for brain-inspired big data analytics. In: 2019 International Conference on Data Mining Workshops (ICDMW), pp. 522–529. IEEE (2019)

    Google Scholar 

  30. Guellil, I., et al.: A semi-supervised approach for sentiment analysis of Arab(ic+ izi) messages: application to the Algerian dialect. SN Comput. Sci. 2(2), 1–18 (2021). https://doi.org/10.1007/s42979-021-00510-1

    Article  Google Scholar 

  31. Huma, Z.E., et al.: A hybrid deep random neural network for cyberattack detection in the industrial internet of things. IEEE Access 9, 55595–55605 (2021)

    Article  Google Scholar 

  32. Hussain, A., et al.: Artificial intelligence-enabled analysis of UK and us public attitudes on Facebook and twitter towards covid-19 vaccinations. medRxiv (2020)

    Google Scholar 

  33. Hussien, I.O., Dashtipour, K., Hussain, A.: Comparison of sentiment analysis approaches using modern Arabic and Sudanese dialect. In: Ren, J., et al. (eds.) BICS 2018. LNCS (LNAI), vol. 10989, pp. 615–624. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00563-4_60

    Chapter  Google Scholar 

  34. Ieracitano, C., et al.: Statistical analysis driven optimized deep learning system for intrusion detection. In: Ren, J., et al. (eds.) BICS 2018. LNCS (LNAI), vol. 10989, pp. 759–769. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00563-4_74

    Chapter  Google Scholar 

  35. Ieracitano, C., Paviglianiti, A., Mammone, N., Versaci, M., Pasero, E., Morabito, F.C.: SoCNNet: an optimized sobel filter based convolutional neural network for SEM images classification of nanomaterials. In: Esposito, A., Faundez-Zanuy, M., Morabito, F.C., Pasero, E. (eds.) Progresses in Artificial Intelligence and Neural Systems. SIST, vol. 184, pp. 103–113. Springer, Singapore (2021). https://doi.org/10.1007/978-981-15-5093-5_10

    Chapter  Google Scholar 

  36. Jiang, F., Kong, B., Li, J., Dashtipour, K., Gogate, M.: Robust visual saliency optimization based on bidirectional Markov chains. Cogn. Comput. 13(1), 69–80 (2020). https://doi.org/10.1007/s12559-020-09724-6

    Article  Google Scholar 

  37. Liaqat, S., Dashtipour, K., Arshad, K., Ramzan, N.: Non invasive skin hydration level detection using machine learning. Electronics 9(7), 1086 (2020)

    Article  Google Scholar 

  38. Liaqat, S., Dashtipour, K., Zahid, A., Assaleh, K., Arshad, K., Ramzan, N.: Detection of atrial fibrillation using a machine learning approach. Information 11(12), 549 (2020)

    Article  Google Scholar 

  39. Lindeboom, J., Schmand, B., Tulner, L., Walstra, G., Jonker, C.: Visual association test to detect early dementia of the alzheimer type. J. Neurol. Neurosurg. Psychiatry 73(2), 126–133 (2002)

    Article  Google Scholar 

  40. Liu, S., Liu, S., Cai, W., Pujol, S., Kikinis, R., Feng, D.: Early diagnosis of alzheimer’s disease with deep learning. In: 2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI), pp. 1015–1018. IEEE (2014)

    Google Scholar 

  41. Lodha, P., Talele, A., Degaonkar, K.: Diagnosis of Alzheimer’s disease using machine learning. In: 2018 Fourth International Conference on Computing Communication Control and Automation (ICCUBEA), pp. 1–4. IEEE (2018)

    Google Scholar 

  42. Nisar, S., Tariq, M., Adeel, A., Gogate, M., Hussain, A.: Cognitively inspired feature extraction and speech recognition for automated hearing loss testing. Cogn. Comput. 11(4), 489–502 (2019). https://doi.org/10.1007/s12559-018-9607-4

    Article  Google Scholar 

  43. Ozturk, M., Gogate, M., Onireti, O., Adeel, A., Hussain, A., Imran, M.A.: A novel deep learning driven, low-cost mobility prediction approach for 5G cellular networks: the case of the control/data separation architecture (CDSA). Neurocomputing 358, 479–489 (2019)

    Article  Google Scholar 

  44. Rawat, R.M., Akram, M., Pradeep, S.S., et al.: Dementia detection using machine learning by stacking models. In: 2020 5th International Conference on Communication and Electronics Systems (ICCES), pp. 849–854. IEEE (2020)

    Google Scholar 

  45. Sarawgi, U., Zulfikar, W., Soliman, N., Maes, P.: Multimodal inductive transfer learning for detection of alzheimer’s dementia and its severity. arXiv preprint arXiv:2009.00700 (2020)

  46. Shankar, K., Lakshmanaprabu, S.K., Khanna, A., Tanwar, S., Rodrigues, J.J.P.C., Roy, N.R.: Alzheimer detection using group grey wolf optimization based features with convolutional classifier. Comput. Electr.l Eng. 77, 230–243 (2019)

    Article  Google Scholar 

  47. Taylor, K.: Dementia: A Very Short Introduction. Oxford University Press, Oxford (2020)

    Book  Google Scholar 

  48. Taylor, W., Shah, S.A., Dashtipour, K., Zahid, A., Abbasi, Q.H., Imran, M.A.: An intelligent non-invasive real-time human activity recognition system for next-generation healthcare. Sensors 20(9), 2653 (2020)

    Article  Google Scholar 

  49. Tohgi, H., Abe, T., Kimura, M., Saheki, M., Takahashi, S.: Cerebrospinal fluid acetylcholine and choline in vascular dementia of Binswanger and multiple small infarct types as compared with alzheimer-type dementia. J. Neural Transm. 103(10), 1211–1220 (1996). https://doi.org/10.1007/BF01271206

    Article  Google Scholar 

  50. Trambaiolli, L.R., Lorena, A.C., Fraga, F.J., Kanda, P.A.M., Anghinah, R., Nitrini, R.: Improving Alzheimer’s disease diagnosis with machine learning techniques. Clin. EEG Neurosci. 42(3), 160–165 (2011)

    Article  Google Scholar 

  51. Yu, Z., et al.: Energy and performance trade-off optimization in heterogeneous computing via reinforcement learning. Electronics 9(11), 1812 (2020)

    Article  Google Scholar 

  52. Zhang, Y., et al.: Detection of subjects and brain regions related to Alzheimer’s disease using 3D MRI scans based on eigenbrain and machine learning. Front. Comput. Neurosci. 9, 66 (2015)

    Google Scholar 

Download references

Acknowledgement

This work is supported in part by the Ajman University Internal Research Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kia Dashtipour .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dashtipour, K. et al. (2022). Detecting Alzheimer’s Disease Using Machine Learning Methods. In: Ur Rehman, M., Zoha, A. (eds) Body Area Networks. Smart IoT and Big Data for Intelligent Health Management. BODYNETS 2021. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 420. Springer, Cham. https://doi.org/10.1007/978-3-030-95593-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-95593-9_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-95592-2

  • Online ISBN: 978-3-030-95593-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics