Abstract
As the world is experiencing population growth, the portion of the older people, aged 65 and above, is also growing at a faster rate. As a result, the dementia with Alzheimer’s disease is expected to increase rapidly in the next few years. Currently, healthcare systems require an accurate detection of the disease for its treatment and prevention. Therefore, it has become essential to develop a framework for early detection of Alzheimer’s disease to avoid complications. To this end, a novel framework, based on machine-learning (ML) and deep-learning (DL) methods, is proposed to detect Alzheimer’s disease. In particular, the performance of different ML and DL algorithms has been evaluated against their detection accuracy. The experimental results state that bidirectional long short-term memory (BiLSTM) outperforms the ML methods with a detection accuracy of 91.28%. Furthermore, the comparison with the state-of-the-art indicates the superiority of the our framework over the other proposed approaches in the literature.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Adeel, A., Gogate, M., Hussain, A.: Contextual deep learning-based audio-visual switching for speech enhancement in real-world environments. Inf. Fusion 59, 163–170 (2020)
Ahmed, R., et al.: Deep neural network-based contextual recognition of Arabic handwritten scripts. Entropy 23(3), 340 (2021)
Alqarafi, A.S., Adeel, A., Gogate, M., Dashitpour, K., Hussain, A., Durrani, T.: Toward’s Arabic multi-modal sentiment analysis. In: Liang, Q., Mu, J., Jia, M., Wang, W., Feng, X., Zhang, B. (eds.) CSPS 2017. LNEE, vol. 463, pp. 2378–2386. Springer, Singapore (2019). https://doi.org/10.1007/978-981-10-6571-2_290
Ammar, R.B., Ayed, Y.B.: Speech processing for early alzheimer disease diagnosis: machine learning based approach. In: 2018 IEEE/ACS 15th International Conference on Computer Systems and Applications (AICCSA), pp. 1–8. IEEE (2018)
Asad, S.M., et al.: Mobility management-based autonomous energy-aware framework using machine learning approach in dense mobile networks. Signals 1(2), 170–187 (2020)
Asad, S.M., Dashtipour, K., Hussain, S., Abbasi, Q.H., Imran, M.A.: Travelers-tracing and mobility profiling using machine learning in railway systems. In 2020 International Conference on UK-China Emerging Technologies (UCET), pp. 1–4. IEEE (2020)
Casanova, R., et al.: Alzheimer’s disease risk assessment using large-scale machine learning methods. PloS One 8(11), e77949 (2013)
Churcher, A., et al.: An experimental analysis of attack classification using machine learning in IoT networks. Sensors 21(2), 446 (2021)
Dashtipour, K., Gogate, M., Adeel, A., Algarafi, A., Howard, N., Hussain, A.: Persian named entity recognition. In: 2017 IEEE 16th International Conference on Cognitive Informatics and Cognitive Computing (ICCI* CC), pp. 79–83. IEEE (2017)
Dashtipour, K., Gogate, M., Adeel, A., Hussain, A., Alqarafi, A., Durrani, T.: A comparative study of Persian sentiment analysis based on different feature combinations. In: Liang, Q., Mu, J., Jia, M., Wang, W., Feng, X., Zhang, B. (eds.) CSPS 2017. LNEE, vol. 463, pp. 2288–2294. Springer, Singapore (2019). https://doi.org/10.1007/978-981-10-6571-2_279
Dashtipour, K., Gogate, M., Adeel, A., Ieracitano, C., Larijani, H., Hussain, A.: Exploiting deep learning for Persian sentiment analysis. In: Ren, J., et al. (eds.) BICS 2018. LNCS (LNAI), vol. 10989, pp. 597–604. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00563-4_58
Dashtipour, K., Gogate, M., Adeel, A., Larijani, H., Hussain, A.: Sentiment analysis of Persian movie reviews using deep learning. Entropy 23(5), 596 (2021)
Dashtipour, K., Gogate, M., Cambria, E., Hussain, A.: A novel context-aware multimodal framework for persian sentiment analysis. arXiv preprint arXiv:2103.02636 (2021)
Dashtipour, K., Gogate, M., Li, J., Jiang, F., Kong, B., Hussain, A.: A hybrid Persian sentiment analysis framework: integrating dependency grammar based rules and deep neural networks. Neurocomputing 380, 1–10 (2020)
Dashtipour, K., Hussain, A., Gelbukh, A.: Adaptation of sentiment analysis techniques to Persian language. In: Gelbukh, A. (ed.) CICLing 2017, Part II. LNCS, vol. 10762, pp. 129–140. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-77116-8_10
Dashtipour, K., Hussain, A., Zhou, Q., Gelbukh, A., Hawalah, A.Y.A., Cambria, E.: PerSent: a freely available Persian sentiment Lexicon. In: Liu, C.-L., Hussain, A., Luo, B., Tan, K.C., Zeng, Y., Zhang, Z. (eds.) BICS 2016. LNCS (LNAI), vol. 10023, pp. 310–320. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49685-6_28
Dashtipour, K., et al.: Multilingual sentiment analysis: state of the art and independent comparison of techniques. Cogn. Comput. 8(4), 757–771 (2016)
Dashtipour, K., Raza, A., Gelbukh, A., Zhang, R., Cambria, E., Hussain, A.: PerSent 2.0: Persian sentiment Lexicon enriched with domain-specific words. In: Ren, J., et al. (eds.) BICS 2019. LNCS (LNAI), vol. 11691, pp. 497–509. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-39431-8_48
Dashtipour, K., et al.: Public perception towards fifth generation of cellular networks (5G) on social media. Frontiers in Big Data (2021)
Dyrba, M., et al.: Robust automated detection of microstructural white matter degeneration in Alzheimer’s disease using machine learning classification of multicenter dti data. PloS One 8(5), e64925 (2013)
D’Andrea, M.R., Cole, G.M., Ard, M.D.: The microglial phagocytic role with specific plaque types in the alzheimer disease brain. Neurobiol. Aging 25(5), 675–683 (2004)
Escudero, J., et al.: Machine learning-based method for personalized and cost-effective detection of alzheimer’s disease. IEEE Trans. Biomed. Eng. 6(1), 164–168 (2012)
Gepperth, A.R.T., Hecht, T., Gogate, M.: A generative learning approach to sensor fusion and change detection. Cogn. Comput. 8(5), 806–817 (2016). https://doi.org/10.1007/s12559-016-9390-z
Gogate, M., Adeel, A., Hussain, A.: Deep learning driven multimodal fusion for automated deception detection. In: 2017 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 1–6. IEEE (2017)
Gogate, M., Adeel, A., Hussain, A.: A novel brain-inspired compression-based optimised multimodal fusion for emotion recognition. In: 2017 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 1–7. IEEE (2017)
Gogate, M., Adeel, A., Marxer, R., Barker, J., Hussain, A.: DNN driven speaker independent audio-visual mask estimation for speech separation. arXiv preprint arXiv:1808.00060 (2018)
Gogate, M., Dashtipour, K., Adeel, A., Hussain, A.: CochleaNet: a robust language-independent audio-visual model for real-time speech enhancement. Inf. Fusion 63, 273–285 (2020)
Gogate, M., Dashtipour, K., Hussain, A.: Visual speech in real noisy environments (vision): a novel benchmark dataset and deep learning-based baseline system. In: Proceedings of the Interspeech 2020, pp. 4521–4525 (2020)
Gogate, M., Hussain, A., Huang, K.: Random features and random neurons for brain-inspired big data analytics. In: 2019 International Conference on Data Mining Workshops (ICDMW), pp. 522–529. IEEE (2019)
Guellil, I., et al.: A semi-supervised approach for sentiment analysis of Arab(ic+ izi) messages: application to the Algerian dialect. SN Comput. Sci. 2(2), 1–18 (2021). https://doi.org/10.1007/s42979-021-00510-1
Huma, Z.E., et al.: A hybrid deep random neural network for cyberattack detection in the industrial internet of things. IEEE Access 9, 55595–55605 (2021)
Hussain, A., et al.: Artificial intelligence-enabled analysis of UK and us public attitudes on Facebook and twitter towards covid-19 vaccinations. medRxiv (2020)
Hussien, I.O., Dashtipour, K., Hussain, A.: Comparison of sentiment analysis approaches using modern Arabic and Sudanese dialect. In: Ren, J., et al. (eds.) BICS 2018. LNCS (LNAI), vol. 10989, pp. 615–624. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00563-4_60
Ieracitano, C., et al.: Statistical analysis driven optimized deep learning system for intrusion detection. In: Ren, J., et al. (eds.) BICS 2018. LNCS (LNAI), vol. 10989, pp. 759–769. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00563-4_74
Ieracitano, C., Paviglianiti, A., Mammone, N., Versaci, M., Pasero, E., Morabito, F.C.: SoCNNet: an optimized sobel filter based convolutional neural network for SEM images classification of nanomaterials. In: Esposito, A., Faundez-Zanuy, M., Morabito, F.C., Pasero, E. (eds.) Progresses in Artificial Intelligence and Neural Systems. SIST, vol. 184, pp. 103–113. Springer, Singapore (2021). https://doi.org/10.1007/978-981-15-5093-5_10
Jiang, F., Kong, B., Li, J., Dashtipour, K., Gogate, M.: Robust visual saliency optimization based on bidirectional Markov chains. Cogn. Comput. 13(1), 69–80 (2020). https://doi.org/10.1007/s12559-020-09724-6
Liaqat, S., Dashtipour, K., Arshad, K., Ramzan, N.: Non invasive skin hydration level detection using machine learning. Electronics 9(7), 1086 (2020)
Liaqat, S., Dashtipour, K., Zahid, A., Assaleh, K., Arshad, K., Ramzan, N.: Detection of atrial fibrillation using a machine learning approach. Information 11(12), 549 (2020)
Lindeboom, J., Schmand, B., Tulner, L., Walstra, G., Jonker, C.: Visual association test to detect early dementia of the alzheimer type. J. Neurol. Neurosurg. Psychiatry 73(2), 126–133 (2002)
Liu, S., Liu, S., Cai, W., Pujol, S., Kikinis, R., Feng, D.: Early diagnosis of alzheimer’s disease with deep learning. In: 2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI), pp. 1015–1018. IEEE (2014)
Lodha, P., Talele, A., Degaonkar, K.: Diagnosis of Alzheimer’s disease using machine learning. In: 2018 Fourth International Conference on Computing Communication Control and Automation (ICCUBEA), pp. 1–4. IEEE (2018)
Nisar, S., Tariq, M., Adeel, A., Gogate, M., Hussain, A.: Cognitively inspired feature extraction and speech recognition for automated hearing loss testing. Cogn. Comput. 11(4), 489–502 (2019). https://doi.org/10.1007/s12559-018-9607-4
Ozturk, M., Gogate, M., Onireti, O., Adeel, A., Hussain, A., Imran, M.A.: A novel deep learning driven, low-cost mobility prediction approach for 5G cellular networks: the case of the control/data separation architecture (CDSA). Neurocomputing 358, 479–489 (2019)
Rawat, R.M., Akram, M., Pradeep, S.S., et al.: Dementia detection using machine learning by stacking models. In: 2020 5th International Conference on Communication and Electronics Systems (ICCES), pp. 849–854. IEEE (2020)
Sarawgi, U., Zulfikar, W., Soliman, N., Maes, P.: Multimodal inductive transfer learning for detection of alzheimer’s dementia and its severity. arXiv preprint arXiv:2009.00700 (2020)
Shankar, K., Lakshmanaprabu, S.K., Khanna, A., Tanwar, S., Rodrigues, J.J.P.C., Roy, N.R.: Alzheimer detection using group grey wolf optimization based features with convolutional classifier. Comput. Electr.l Eng. 77, 230–243 (2019)
Taylor, K.: Dementia: A Very Short Introduction. Oxford University Press, Oxford (2020)
Taylor, W., Shah, S.A., Dashtipour, K., Zahid, A., Abbasi, Q.H., Imran, M.A.: An intelligent non-invasive real-time human activity recognition system for next-generation healthcare. Sensors 20(9), 2653 (2020)
Tohgi, H., Abe, T., Kimura, M., Saheki, M., Takahashi, S.: Cerebrospinal fluid acetylcholine and choline in vascular dementia of Binswanger and multiple small infarct types as compared with alzheimer-type dementia. J. Neural Transm. 103(10), 1211–1220 (1996). https://doi.org/10.1007/BF01271206
Trambaiolli, L.R., Lorena, A.C., Fraga, F.J., Kanda, P.A.M., Anghinah, R., Nitrini, R.: Improving Alzheimer’s disease diagnosis with machine learning techniques. Clin. EEG Neurosci. 42(3), 160–165 (2011)
Yu, Z., et al.: Energy and performance trade-off optimization in heterogeneous computing via reinforcement learning. Electronics 9(11), 1812 (2020)
Zhang, Y., et al.: Detection of subjects and brain regions related to Alzheimer’s disease using 3D MRI scans based on eigenbrain and machine learning. Front. Comput. Neurosci. 9, 66 (2015)
Acknowledgement
This work is supported in part by the Ajman University Internal Research Grant.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering
About this paper
Cite this paper
Dashtipour, K. et al. (2022). Detecting Alzheimer’s Disease Using Machine Learning Methods. In: Ur Rehman, M., Zoha, A. (eds) Body Area Networks. Smart IoT and Big Data for Intelligent Health Management. BODYNETS 2021. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 420. Springer, Cham. https://doi.org/10.1007/978-3-030-95593-9_8
Download citation
DOI: https://doi.org/10.1007/978-3-030-95593-9_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-95592-2
Online ISBN: 978-3-030-95593-9
eBook Packages: Computer ScienceComputer Science (R0)