Nothing Special   »   [go: up one dir, main page]

Skip to main content

Making Proofs of Floating-Point Programs Accessible to Regular Developers

  • Conference paper
  • First Online:
Software Verification (NSV 2021, VSTTE 2021)

Abstract

Formal verification of floating-point computations remains a challenge for the software engineer. Automated, specialized tools can handle floating-point computations well, but struggle with other types of data or memory reasoning. Specialized tools based on proof assistants are very powerful, but require a high degree of expertise. General-purpose tools for deductive verification of programs have added support for floating-point computations in recent years, but often the proved properties are limited to verifying ranges or absence of special values such as NaN or Infinity. Proofs of more complex properties, such as bounds on rounding errors, are generally reserved to experts and often require the use of either a proof assistant or a specialized solver as a backend.

In this article, we show how generic deductive verification tools based on general-purpose SMT solvers can be used to verify different kinds of properties on floating point computations up to bounds on rounding errors. The demonstration is done on a computation of a weighted average using floating-point numbers, using an approach which is heavily based on auto-active verification. We use the general-purpose tool SPARK for formal verification of Ada programs based on the SMT solvers Alt-Ergo, CVC4, and Z3 but it can in principle be carried out in other similar languages and tools such as Frama-C or KeY.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/AdaCore/spark2014/tree/master/include.

  2. 2.

    Ada uses the term subprogram to denote functions (which return a value) and procedures (which do not).

  3. 3.

    It is the bound used for lemmas about division in the lemma library of SPARK (more about the lemma library later in this article).

  4. 4.

    Lemma Lemma_Add_Is_Monotonic takes inputs between Float’First/2.0 and Float’Last/2.0 to statically ensure absence of overflows in the addition.

  5. 5.

    http://ada-auth.org/standards/2xrm/html/RM-A-5-7.html.

  6. 6.

    Note that we use \(10^{-7}\) as an approximation of Epsilon here. A more precise approximation could be considered, like \(6\times 10^{-8}\), but, from our experiments, it causes proofs of error bounds on basic operations to become out of reach of the automated SMT solvers used behind SPARK.

  7. 7.

    Theoretically, as addition on standard numbers can only give standard numbers and addition on subnormals is exact, the absolute part of the bound should not be necessary here. However, this reasoning is currently out of reach of the underlying SMT solvers.

  8. 8.

    https://github.com/AdaCore/spark2014/tree/master/testsuite/gnatprove/tests/U129-014__sqrt_error_bounds.

References

  1. Abbasi, R., Schiffl, J., Darulova, E., Ulbrich, M., Ahrendt, W.: Deductive verification of floating-point Java programs in KeY. In: TACAS (2), pp. 242–261 (2021)

    Google Scholar 

  2. Ahrendt, W., Beckert, B., Bubel, R., Hähnle, R., Schmitt, P.H., Ulbrich, M.: Deductive software verification-the key book. Lecture Notes in Computer Science, vol. 10001. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49812-6

    Book  Google Scholar 

  3. Astrauskas, V., Müller, P., Poli, F., Summers, A.J.: Leveraging rust types for modular specification and verification. Proc. ACM Program. Lang. 3(OOPSLA), 1–30 (2019)

    Article  Google Scholar 

  4. Barnes, J.: Programming in Ada 2012. Cambridge University Press, Cambridge (2014)

    Book  Google Scholar 

  5. Bobot, F., Filliâtre, J.C., Marché, C., Paskevich, A.: Why3: shepherd your herd of provers. In: Boogie 2011: First International Workshop on Intermediate Verification Languages, pp. 53–64 (2011)

    Google Scholar 

  6. Boldo, S.: Formal verification of programs computing the floating-point average. In: Butler, M., Conchon, S., Zaïdi, F. (eds.) ICFEM 2015. LNCS, vol. 9407, pp. 17–32. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25423-4_2

    Chapter  Google Scholar 

  7. Boldo, S., Marché, C.: Formal verification of numerical programs: from c annotated programs to mechanical proofs. Math. Comput. Sci. 5(4), 377–393 (2011)

    Article  Google Scholar 

  8. Boldo, S., Melquiond, G.: Flocq: a unified library for proving floating-point algorithms in Coq. In: 2011 IEEE 20th Symposium on Computer Arithmetic, pp. 243–252. IEEE (2011)

    Google Scholar 

  9. Brain, M., Schanda, F., Sun, Y.: Building better bit-blasting for floating-point problems. In: Vojnar, T., Zhang, L. (eds.) TACAS 2019. LNCS, vol. 11427, pp. 79–98. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17462-0_5

    Chapter  Google Scholar 

  10. Cok, D.R.: OpenJML: JML for Java 7 by extending OpenJDK. In: Bobaru, M., Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617, pp. 472–479. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20398-5_35

    Chapter  Google Scholar 

  11. Conchon, S., Iguernlala, M., Ji, K., Melquiond, G., Fumex, C.: A three-tier strategy for reasoning about floating-point numbers in SMT. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10427, pp. 419–435. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63390-9_22

    Chapter  Google Scholar 

  12. Cuoq, P., Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.: Frama-C. In: Eleftherakis, G., Hinchey, M., Holcombe, M. (eds.) SEFM 2012. LNCS, vol. 7504, pp. 233–247. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33826-7_16

    Chapter  Google Scholar 

  13. De Dinechin, F., Lauter, C., Melquiond, G.: Certifying the floating-point implementation of an elementary function using Gappa. IEEE Trans. Comput. 60(2), 242–253 (2010)

    Article  MathSciNet  Google Scholar 

  14. Delmas, D., Goubault, E., Putot, S., Souyris, J., Tekkal, K., Védrine, F.: Towards an industrial Use of FLUCTUAT on safety-critical avionics software. In: Alpuente, M., Cook, B., Joubert, C. (eds.) FMICS 2009. LNCS, vol. 5825, pp. 53–69. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04570-7_6

    Chapter  Google Scholar 

  15. Dross, C., Moy, Y.: Auto-active proof of red-black trees in SPARK. In: Barrett, C., Davies, M., Kahsai, T. (eds.) NFM 2017. LNCS, vol. 10227, pp. 68–83. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57288-8_5

    Chapter  Google Scholar 

  16. Fumex, C., Marché, C., Moy, Y.: Automating the verification of floating-point programs. In: Paskevich, A., Wies, T. (eds.) VSTTE 2017. LNCS, vol. 10712, pp. 102–119. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-72308-2_7

    Chapter  Google Scholar 

  17. Jacobs, B., Smans, J., Philippaerts, P., Vogels, F., Penninckx, W., Piessens, F.: VeriFast: a powerful, sound, predictable, fast verifier for C and Java. In: Bobaru, M., Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617, pp. 41–55. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20398-5_4

    Chapter  Google Scholar 

  18. Leino, K.R.M., Moskal, M.: Usable auto-active verification. In: Usable Verification Workshop (2010)

    Google Scholar 

  19. Matsushita, Y., Tsukada, T., Kobayashi, N.: RustHorn: CHC-based verification for rust programs. In: European Symposium on Programming, pp. 484–514. Springer, Cham (2020)

    Google Scholar 

  20. McCormick, J.W., Chapin, P.C.: Building High Integrity Applications with SPARK. Cambridge University Press, Cambridge (2015)

    Book  Google Scholar 

  21. Monniaux, D.: The pitfalls of verifying floating-point computations. ACM Trans. Program. Lang. Syst. (TOPLAS) 30(3), 1–41 (2008)

    Article  Google Scholar 

  22. Moscato, M.M., Titolo, L., Feliú, M.A., Muñoz, C.A.: Provably correct floating-point implementation of a point-in-polygon algorithm. In: ter Beek, M.H., McIver, A., Oliveira, J.N. (eds.) FM 2019. LNCS, vol. 11800, pp. 21–37. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30942-8_3

    Chapter  Google Scholar 

  23. Rümmer, P., Wahl, T.: An SMT-LIB theory of binary floating-point arithmetic. In: International Workshop on Satisfiability Modulo Theories (SMT), p. 151 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claire Dross .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dross, C., Kanig, J. (2022). Making Proofs of Floating-Point Programs Accessible to Regular Developers. In: Bloem, R., Dimitrova, R., Fan, C., Sharygina, N. (eds) Software Verification. NSV VSTTE 2021 2021. Lecture Notes in Computer Science(), vol 13124. Springer, Cham. https://doi.org/10.1007/978-3-030-95561-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-95561-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-95560-1

  • Online ISBN: 978-3-030-95561-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics