Nothing Special   »   [go: up one dir, main page]

Skip to main content

Predictable Features Elimination: An Unsupervised Approach to Feature Selection

  • Conference paper
  • First Online:
Machine Learning, Optimization, and Data Science (LOD 2021)

Abstract

We propose an unsupervised, model-agnostic, wrapper method for feature selection. We assume that if a feature can be predicted using the others, it adds little information to the problem, and therefore could be removed without impairing the performance of whatever model will be eventually built. The proposed method iteratively identifies and removes predictable, or nearly-predictable, redundant features, allowing to trade-off complexity with expected quality. The approach do not rely on target labels nor values, and the model used to identify predictable features is not related to the final use of the feature set. Therefore, it can be used for supervised, unsupervised, or semi-supervised problems, or even as a safe, pre-processing step to improve the quality of the results of other feature selection techniques. Experimental results against state-of-the-art feature-selection algorithms show satisfying performance on several non-trivial benchmarks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/glubbdubdrib/predictable-feature-elimination.

References

  1. Barbiero, P., Lutton, E., Squillero, G., Tonda, A.: A novel outlook on feature selection as a multi-objective problem. In: Idoumghar, L., Legrand, P., Liefooghe, A., Lutton, E., Monmarché, N., Schoenauer, M. (eds.) EA 2019. LNCS, vol. 12052, pp. 68–81. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45715-0_6

    Chapter  Google Scholar 

  2. Barbiero, P., Squillero, G., Tonda, A.: Modeling generalization in machine learning: a methodological and computational study. arXiv preprint arXiv:2006.15680 (2020)

  3. Bermingham, M., et al.: Application of high-dimensional feature selection: evaluation for genomic prediction in man. Sci. Rep. 5, 10312 (2015). https://doi.org/10.1038/srep10312

    Article  Google Scholar 

  4. Cai, D., Zhang, C., He, X.: Unsupervised feature selection for multi-cluster data. In: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 333–342 (2010)

    Google Scholar 

  5. Chien, Y., Fu, K.S.: On the generalized Karhunen-Loéve expansion. IEEE Trans. Inf. Theor. 13(3), 518–520 (1967)

    Article  MATH  Google Scholar 

  6. Cilia, N.D., De Stefano, C., Fontanella, F., Scotto di Freca, A.: Variable-length representation for EC-based feature selection in high-dimensional data. In: Kaufmann, P., Castillo, P.A. (eds.) EvoApplications 2019. LNCS, vol. 11454, pp. 325–340. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-16692-2_22

    Chapter  Google Scholar 

  7. Erickson, N., et al.: AutoGluon-Tabular: robust and accurate AutoML for structured data. arXiv preprint arXiv:2003.06505 (2020)

  8. Fanty, M., Cole, R.: Spoken letter recognition. In: Advances in Neural Information Processing Systems, pp. 220–226 (1991)

    Google Scholar 

  9. Fisher, R.A.: XV.-The correlation between relatives on the supposition of mendelian inheritance. Earth Environ. Sci. Trans. R. Soc. Edinburgh 52(2), 399–433 (1919)

    Google Scholar 

  10. Guyon, I.: Design of experiments of the NIPS 2003 variable selection benchmark. In: NIPS 2003 Workshop on Feature Extraction and Feature Selection (2003)

    Google Scholar 

  11. Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. J. Mach. Learn. Res. 3, 1157–1182 (2003)

    MATH  Google Scholar 

  12. Guyon, I., Weston, J., Barnhill, S., Vapnik, V.: Gene selection for cancer classification using support vector machines. Mach. Learn. 46(1–3), 389–422 (2002)

    Article  MATH  Google Scholar 

  13. Hamdani, T.M., Won, J.-M., Alimi, A.M., Karray, F.: Multi-objective feature selection with NSGA II. In: Beliczynski, B., Dzielinski, A., Iwanowski, M., Ribeiro, B. (eds.) ICANNGA 2007. LNCS, vol. 4431, pp. 240–247. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71618-1_27

    Chapter  Google Scholar 

  14. He, X., Cai, D., Niyogi, P.: Laplacian score for feature selection. In: Advances in Neural Information Processing Systems, pp. 507–514 (2006)

    Google Scholar 

  15. Kozachenko, L., Leonenko, N.N.: Sample estimate of the entropy of a random vector. Problemy Peredachi Informatsii 23(2), 9–16 (1987)

    MathSciNet  MATH  Google Scholar 

  16. Lewis, P.: The characteristic selection problem in recognition systems. IRE Trans. inf. Theor. 8(2), 171–178 (1962)

    Article  MATH  Google Scholar 

  17. Li, J., et al.: Feature selection: a data perspective. ACM Comput. Surv. (CSUR) 50(6), 94 (2018)

    Article  Google Scholar 

  18. Li, Z., Yang, Y., Liu, J., Zhou, X., Lu, H.: Unsupervised feature selection using nonnegative spectral analysis. In: 26th AAAI Conference on Artificial Intelligence (2012)

    Google Scholar 

  19. Pedregosa, F., et al.: scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  20. Rousseeuw, P.J.: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987)

    Article  MATH  Google Scholar 

  21. Steel, R.G.D., Torrie, J.H., et al.: Principles and Procedures of Statistics (1960)

    Google Scholar 

  22. Steinhaus, H.: Sur la division des corp materiels en parties. Bull. Acad. Polon. Sci. 1(804), 801 (1956)

    MathSciNet  MATH  Google Scholar 

  23. Tsai, F.S.: Dimensionality reduction for computer facial animation. Exp. Syst. Appl. 39(5), 4965–4971 (2012). https://doi.org/10.1016/j.eswa.2011.10.018

    Article  Google Scholar 

  24. Turner, M.C., Krewski, D., Pope, C.A., III., Chen, Y., Gapstur, S.M., Thun, M.J.: Long-term ambient fine particulate matter air pollution and lung cancer in a large cohort of never-smokers. Am. J. Respir. Crit. Care Med. 184(12), 1374–1381 (2011)

    Article  Google Scholar 

  25. Van Rijsbergen, C.J.: Information Retrieval. 2nd edn. Butterworth-Heinemann, Newton, MA (1979)

    Google Scholar 

  26. Vanschoren, J., van Rijn, J.N., Bischl, B., Torgo, L.: OpenML: networked science in machine learning. SIGKDD Explor. 15(2), 49–60 (2013). https://doi.org/10.1145/2641190.2641198

  27. Vergara, A., Vembu, S., Ayhan, T., Ryan, M.A., Homer, M.L., Huerta, R.: Chemical gas sensor drift compensation using classifier ensembles. Sens. Actuators B Chem. 166, 320–329 (2012)

    Article  Google Scholar 

  28. Vignolo, L.D., Milone, D.H., Scharcanski, J.: Feature selection for face recognition based on multi-objective evolutionary wrappers. Exp. Syst. Appl. 40(13), 5077–5084 (2013)

    Article  Google Scholar 

  29. Ward, J.H., Jr.: Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc. 58(301), 236–244 (1963)

    Article  MathSciNet  Google Scholar 

  30. Weston, J., Mukherjee, S., Chapelle, O., Pontil, M., Poggio, T., Vapnik, V.: Feature selection for SVMs. In: Advances in Neural Information Processing Systems 13, pp. 668–674. MIT Press (2000)

    Google Scholar 

  31. Xue, B., Fu, W., Zhang, M.: Multi-objective feature selection in classification: a differential evolution approach. In: Dick, G., et al. (eds.) SEAL 2014. LNCS, vol. 8886, pp. 516–528. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13563-2_44

    Chapter  Google Scholar 

  32. Xue, B., Zhang, M., Browne, W.N., Yao, X.: A survey on evolutionary computation approaches to feature selection. IEEE Trans. Evol. Comput. 20(4), 606–626 (2015)

    Article  Google Scholar 

  33. Yang, Y., Shen, H.T., Ma, Z., Huang, Z., Zhou, X.: L2, 1-norm regularized discriminative feature selection for unsupervised. In: 22nd International Joint Conference on Artificial Intelligence (2011)

    Google Scholar 

  34. Zhao, Z., Liu, H.: Spectral feature selection for supervised and unsupervised learning. In: Proceedings of the 24th International Conference on Machine Learning, pp. 1151–1157 (2007)

    Google Scholar 

  35. Zhou, Z., Li, S., Qin, G., Folkert, M., Jiang, S., Wang, J.: Multi-objective based radiomic feature selection for lesion malignancy classification. IEEE J. Biomed. Health Inform. 24, 194–204 (2019)

    Article  Google Scholar 

  36. Zill, D., Wright, W.S., Cullen, M.R.: Advanced Engineering Mathematics. Jones & Bartlett Learning (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Squillero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Barbiero, P., Squillero, G., Tonda, A. (2022). Predictable Features Elimination: An Unsupervised Approach to Feature Selection. In: Nicosia, G., et al. Machine Learning, Optimization, and Data Science. LOD 2021. Lecture Notes in Computer Science(), vol 13163. Springer, Cham. https://doi.org/10.1007/978-3-030-95467-3_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-95467-3_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-95466-6

  • Online ISBN: 978-3-030-95467-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics