Abstract
In the visual target tracking, the template image often contains background information because of manual box selection, which increases the difficulty of feature extraction and the complexity of calculation when the image goes through feature extraction. The existing method has achieved satisfactory results by optimizing the internal of the Siamese network model. However, it fails to consider pre-processing the template image, which is an important process to improve the performance of the target tracking model. Thus, we use image segmentation to extract the target from the template image and then propose a method that introducing the clustering segmentation into the Siamese network to reduce the background information on the tracker. Introducing our present into SiamFC, SiamRPN, SiamRPN++, and SiamFC++ frameworks, we achieve performance improvements on both OTB2015 and VOT2018 challenging benchmarks.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Süsstrunk, S.: Slic superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Patt. Anal. Mach. Intell. 34(11), 2274–2282 (2012)
Akiba, T., Suzuki, S., Fukuda, K.: Extremely large minibatch SGD: training resnet-50 on imagenet in 15 minutes. arXiv preprint arXiv:1711.04325 (2017)
Al-Amri, S.S., Kalyankar, N., Khamitkar, S.: Image segmentation by using edge detection. Int. J. Comput. Sci. Eng. 2(3), 804–807 (2010)
Bertinetto, L., Valmadre, J., Henriques, J.F., Vedaldi, A., Torr, P.H.S.: Fully-convolutional Siamese networks for object tracking. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9914, pp. 850–865. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48881-3_56
Chen, W., Long, G., Yao, L., Sheng, Q.Z.: AMRNN: attended multi-task recurrent neural networks for dynamic illness severity prediction. World Wide Web 23(5), 2753–2770 (2020)
Chen, W., Yue, L., Li, B., Wang, C., Sheng, Q.Z.: DAMTRNN: a delta attention-based multi-task RNN for intention recognition. In: Li, J., Wang, S., Qin, S., Li, X., Wang, S. (eds.) ADMA 2019. LNCS (LNAI), vol. 11888, pp. 373–388. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-35231-8_27
Comaniciu, D., Meer, P.: Mean shift: a robust approach toward feature space analysis. IEEE Trans. Patt. Anal. Mach. Intell. 24(5), 603–619 (2002)
Ester, M., Kriegel, H.P., Sander, J., Xu, X., et al.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: KDD, vol. 96, pp. 226–231 (1996)
Goh, T.Y., Basah, S.N., Yazid, H., Safar, M.J.A., Saad, F.S.A.: Perform. Anal. Image Thresh. Otsu Techn. Measurement 114, 298–307 (2018)
Guha, S., Rastogi, R., Shim, K.: CURE: an efficient clustering algorithm for large databases. ACM SIGMOD Record 27(2), 73–84 (1998)
Guo, D., Wang, J., Cui, Y., Wang, Z., Chen, S.: Siamcar: Siamese fully convolutional classification and regression for visual tracking. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6269–6277 (2020)
Guo, Q., Feng, W., Zhou, C., Huang, R., Wan, L., Wang, S.: Learning dynamic Siamese network for visual object tracking. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1763–1771 (2017)
Hamerly, G., Elkan, C.: Learning the k in k-means. Adv. Neural Inform. Proces. Syst. 16, 281–288 (2004)
Han, H., Shan, S., Chen, X., Gao, W.: A comparative study on illumination preprocessing in face recognition. Patt. Recogn. 46(6), 1691–1699 (2013)
Iandola, F.N., Han, S., Moskewicz, M.W., Ashraf, K., Dally, W.J., Keutzer, K.: Squeezenet: Alexnet-level accuracy with 50x fewer parameters and\(<\) 0.5 mB model size. arXiv preprint arXiv:1602.07360 (2016)
Kohonen, T.: The self-organizing map. Proc. IEEE 78(9), 1464–1480 (1990)
Kristan, M., et al.: The sixth visual object tracking vot2018 challenge results. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018). https://doi.org/10.1007/978-3-030-11009-3_1
Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 25, 1097–1105 (2012)
Kumar, B.A., Sirisha, K., Kumar, R.U.: Development of robot navigation system. In: IOP Conference Series: Materials Science and Engineering, vol. 1057, p. 012022. IOP Publishing, Osaka (2021)
Li, B., Wu, W., Wang, Q., Zhang, F., Xing, J., Yan, J.: Siamrpn++: evolution of Siamese visual tracking with very deep networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4282–4291 (2019)
Li, B., Yan, J., Wu, W., Zhu, Z., Hu, X.: High performance visual tracking with Siamese region proposal network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8971–8980 (2018)
MacQueen, J., et al.: Some methods for classification and analysis of multivariate observations. In: Proceedings of the fifth Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, pp. 281–297. Oakland (1967)
Marois, A., Lafond, D., Williot, A., Vachon, F., Tremblay, S.: Real-time gaze-aware cognitive support system for security surveillance. In: Proceedings of the Human Factors and Ergonomics Society Annual Meeting, vol. 64, pp. 1145–1149. SAGE Publications, Los Angeles (2020)
Muthukrishnan, R., Radha, M.: Edge detection techniques for image segmentation. Int. J. Comput. Sci. Inf. Technol. 3(6), 259 (2011)
Park, H.S., Jun, C.H.: A simple and fast algorithm for k-medoids clustering. Expert systems with applications 36(2), 3336–3341 (2009)
Shen, J., Tang, X., Dong, X., Shao, L.: Visual object tracking by hierarchical attention Siamese network. IEEE Trans. Cybern. 50(7), 3068–3080 (2019)
Tao, R., Gavves, E., Smeulders, A.W.: Siamese instance search for tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1420–1429 (2016)
Wagstaff, K., Cardie, C., Rogers, S., Schrödl, S., et al.: Constrained k-means clustering with background knowledge. In: ICML, vol. 1, pp. 577–584 (2001)
Wang, Q., Zhang, L., Bertinetto, L., Hu, W., Torr, P.H.: Fast online object tracking and segmentation: a unifying approach. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1328–1338 (2019)
Wang, Y., Chen, W., Pi, D., Yue, L.: Adversarially regularized medication recommendation model with multi-hop memory network. Knowl. Inf. Syst. 63(1), 125–142 (2020). https://doi.org/10.1007/s10115-020-01513-9
Wang, Y., Chen, W., Pi, D., Yue, L., Wang, S., Xu, M.: Self-supervised adversarial distribution regularization for medication recommendation. In: Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence Main Track, pp. 3134–3140 (2021)
Wu, Y., Lim, J., Yang, M.: Object tracking benchmark. IEEE Trans. Pattern Anal. Mach. Intell. 37(9), 1834–1848 (2015)
Xu, Y., Wang, Z., Li, Z., Yuan, Y., Yu, G.: Siamfc++: towards robust and accurate visual tracking with target estimation guidelines. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 12549–12556 (2020)
Yang, K., He, Z., Zhou, Z., Fan, N.: Siamatt: Siamese attention network for visual tracking. Knowl.-based Syst. 203, 106079 (2020)
Yue, L., et al.: Exploring BCI control in smart environments: intention recognition via EEG representation enhancement learning. ACM Trans. Knowl. Discov. Data 15(5), 1–20 (2021)
Yue, L., Sun, X.X., Gao, W.Z., Feng, G.Z., Zhang, B.Z.: Multiple auxiliary information based deep model for collaborative filtering. J. Comput. Sci. Technol. 33(4), 668–681 (2018)
Yue, L., Tian, D., Chen, W., Han, X., Yin, M.: Deep learning for heterogeneous medical data analysis. World Wide Web 23(5), 2715–2737 (2019). https://doi.org/10.1007/s11280-019-00764-z
Yue, L., Tian, D., Jiang, J., Yao, L., Chen, W., Zhao, X.: Intention recognition from spatio-temporal representation of EEG signals. In: ADC, pp. 1–12 (2021)
Yue, L., Zhao, H., Yang, Y., Tian, D., Zhao, X., Yin, M.: A mimic learning method for disease risk prediction with incomplete initial data. In: Li, G., Yang, J., Gama, J., Natwichai, J., Tong, Y. (eds.) DASFAA 2019. LNCS, vol. 11448, pp. 392–396. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-18590-9_52
Zhu, Z., Wang, Q., Li, B., Wu, W., Yan, J., Hu, W.: Distractor-aware Siamese networks for visual object tracking. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 101–117 (2018)
Zhu, Z., Wu, W., Zou, W., Yan, J.: End-to-end flow correlation tracking with spatial-temporal attention. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 548–557 (2018)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this paper
Cite this paper
Han, X., Qin, Q., Wang, Y., Zhang, Y., Li, H., Liu, Z. (2022). CS-Siam: Siamese-Type Network Tracking Method with Added Cluster Segmentation. In: Li, B., et al. Advanced Data Mining and Applications. ADMA 2022. Lecture Notes in Computer Science(), vol 13088. Springer, Cham. https://doi.org/10.1007/978-3-030-95408-6_19
Download citation
DOI: https://doi.org/10.1007/978-3-030-95408-6_19
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-95407-9
Online ISBN: 978-3-030-95408-6
eBook Packages: Computer ScienceComputer Science (R0)