Nothing Special   »   [go: up one dir, main page]

Skip to main content

CS-Siam: Siamese-Type Network Tracking Method with Added Cluster Segmentation

  • Conference paper
  • First Online:
Advanced Data Mining and Applications (ADMA 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13088))

Included in the following conference series:

  • 1005 Accesses

Abstract

In the visual target tracking, the template image often contains background information because of manual box selection, which increases the difficulty of feature extraction and the complexity of calculation when the image goes through feature extraction. The existing method has achieved satisfactory results by optimizing the internal of the Siamese network model. However, it fails to consider pre-processing the template image, which is an important process to improve the performance of the target tracking model. Thus, we use image segmentation to extract the target from the template image and then propose a method that introducing the clustering segmentation into the Siamese network to reduce the background information on the tracker. Introducing our present into SiamFC, SiamRPN, SiamRPN++, and SiamFC++ frameworks, we achieve performance improvements on both OTB2015 and VOT2018 challenging benchmarks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Süsstrunk, S.: Slic superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Patt. Anal. Mach. Intell. 34(11), 2274–2282 (2012)

    Article  Google Scholar 

  2. Akiba, T., Suzuki, S., Fukuda, K.: Extremely large minibatch SGD: training resnet-50 on imagenet in 15 minutes. arXiv preprint arXiv:1711.04325 (2017)

  3. Al-Amri, S.S., Kalyankar, N., Khamitkar, S.: Image segmentation by using edge detection. Int. J. Comput. Sci. Eng. 2(3), 804–807 (2010)

    Google Scholar 

  4. Bertinetto, L., Valmadre, J., Henriques, J.F., Vedaldi, A., Torr, P.H.S.: Fully-convolutional Siamese networks for object tracking. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9914, pp. 850–865. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48881-3_56

    Chapter  Google Scholar 

  5. Chen, W., Long, G., Yao, L., Sheng, Q.Z.: AMRNN: attended multi-task recurrent neural networks for dynamic illness severity prediction. World Wide Web 23(5), 2753–2770 (2020)

    Article  Google Scholar 

  6. Chen, W., Yue, L., Li, B., Wang, C., Sheng, Q.Z.: DAMTRNN: a delta attention-based multi-task RNN for intention recognition. In: Li, J., Wang, S., Qin, S., Li, X., Wang, S. (eds.) ADMA 2019. LNCS (LNAI), vol. 11888, pp. 373–388. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-35231-8_27

    Chapter  Google Scholar 

  7. Comaniciu, D., Meer, P.: Mean shift: a robust approach toward feature space analysis. IEEE Trans. Patt. Anal. Mach. Intell. 24(5), 603–619 (2002)

    Article  Google Scholar 

  8. Ester, M., Kriegel, H.P., Sander, J., Xu, X., et al.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: KDD, vol. 96, pp. 226–231 (1996)

    Google Scholar 

  9. Goh, T.Y., Basah, S.N., Yazid, H., Safar, M.J.A., Saad, F.S.A.: Perform. Anal. Image Thresh. Otsu Techn. Measurement 114, 298–307 (2018)

    Article  Google Scholar 

  10. Guha, S., Rastogi, R., Shim, K.: CURE: an efficient clustering algorithm for large databases. ACM SIGMOD Record 27(2), 73–84 (1998)

    Article  Google Scholar 

  11. Guo, D., Wang, J., Cui, Y., Wang, Z., Chen, S.: Siamcar: Siamese fully convolutional classification and regression for visual tracking. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6269–6277 (2020)

    Google Scholar 

  12. Guo, Q., Feng, W., Zhou, C., Huang, R., Wan, L., Wang, S.: Learning dynamic Siamese network for visual object tracking. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1763–1771 (2017)

    Google Scholar 

  13. Hamerly, G., Elkan, C.: Learning the k in k-means. Adv. Neural Inform. Proces. Syst. 16, 281–288 (2004)

    Google Scholar 

  14. Han, H., Shan, S., Chen, X., Gao, W.: A comparative study on illumination preprocessing in face recognition. Patt. Recogn. 46(6), 1691–1699 (2013)

    Article  Google Scholar 

  15. Iandola, F.N., Han, S., Moskewicz, M.W., Ashraf, K., Dally, W.J., Keutzer, K.: Squeezenet: Alexnet-level accuracy with 50x fewer parameters and\(<\) 0.5 mB model size. arXiv preprint arXiv:1602.07360 (2016)

  16. Kohonen, T.: The self-organizing map. Proc. IEEE 78(9), 1464–1480 (1990)

    Article  Google Scholar 

  17. Kristan, M., et al.: The sixth visual object tracking vot2018 challenge results. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018). https://doi.org/10.1007/978-3-030-11009-3_1

  18. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 25, 1097–1105 (2012)

    Google Scholar 

  19. Kumar, B.A., Sirisha, K., Kumar, R.U.: Development of robot navigation system. In: IOP Conference Series: Materials Science and Engineering, vol. 1057, p. 012022. IOP Publishing, Osaka (2021)

    Google Scholar 

  20. Li, B., Wu, W., Wang, Q., Zhang, F., Xing, J., Yan, J.: Siamrpn++: evolution of Siamese visual tracking with very deep networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4282–4291 (2019)

    Google Scholar 

  21. Li, B., Yan, J., Wu, W., Zhu, Z., Hu, X.: High performance visual tracking with Siamese region proposal network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8971–8980 (2018)

    Google Scholar 

  22. MacQueen, J., et al.: Some methods for classification and analysis of multivariate observations. In: Proceedings of the fifth Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, pp. 281–297. Oakland (1967)

    Google Scholar 

  23. Marois, A., Lafond, D., Williot, A., Vachon, F., Tremblay, S.: Real-time gaze-aware cognitive support system for security surveillance. In: Proceedings of the Human Factors and Ergonomics Society Annual Meeting, vol. 64, pp. 1145–1149. SAGE Publications, Los Angeles (2020)

    Google Scholar 

  24. Muthukrishnan, R., Radha, M.: Edge detection techniques for image segmentation. Int. J. Comput. Sci. Inf. Technol. 3(6), 259 (2011)

    Google Scholar 

  25. Park, H.S., Jun, C.H.: A simple and fast algorithm for k-medoids clustering. Expert systems with applications 36(2), 3336–3341 (2009)

    Article  Google Scholar 

  26. Shen, J., Tang, X., Dong, X., Shao, L.: Visual object tracking by hierarchical attention Siamese network. IEEE Trans. Cybern. 50(7), 3068–3080 (2019)

    Article  Google Scholar 

  27. Tao, R., Gavves, E., Smeulders, A.W.: Siamese instance search for tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1420–1429 (2016)

    Google Scholar 

  28. Wagstaff, K., Cardie, C., Rogers, S., Schrödl, S., et al.: Constrained k-means clustering with background knowledge. In: ICML, vol. 1, pp. 577–584 (2001)

    Google Scholar 

  29. Wang, Q., Zhang, L., Bertinetto, L., Hu, W., Torr, P.H.: Fast online object tracking and segmentation: a unifying approach. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1328–1338 (2019)

    Google Scholar 

  30. Wang, Y., Chen, W., Pi, D., Yue, L.: Adversarially regularized medication recommendation model with multi-hop memory network. Knowl. Inf. Syst. 63(1), 125–142 (2020). https://doi.org/10.1007/s10115-020-01513-9

    Article  Google Scholar 

  31. Wang, Y., Chen, W., Pi, D., Yue, L., Wang, S., Xu, M.: Self-supervised adversarial distribution regularization for medication recommendation. In: Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence Main Track, pp. 3134–3140 (2021)

    Google Scholar 

  32. Wu, Y., Lim, J., Yang, M.: Object tracking benchmark. IEEE Trans. Pattern Anal. Mach. Intell. 37(9), 1834–1848 (2015)

    Google Scholar 

  33. Xu, Y., Wang, Z., Li, Z., Yuan, Y., Yu, G.: Siamfc++: towards robust and accurate visual tracking with target estimation guidelines. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 12549–12556 (2020)

    Google Scholar 

  34. Yang, K., He, Z., Zhou, Z., Fan, N.: Siamatt: Siamese attention network for visual tracking. Knowl.-based Syst. 203, 106079 (2020)

    Google Scholar 

  35. Yue, L., et al.: Exploring BCI control in smart environments: intention recognition via EEG representation enhancement learning. ACM Trans. Knowl. Discov. Data 15(5), 1–20 (2021)

    Article  Google Scholar 

  36. Yue, L., Sun, X.X., Gao, W.Z., Feng, G.Z., Zhang, B.Z.: Multiple auxiliary information based deep model for collaborative filtering. J. Comput. Sci. Technol. 33(4), 668–681 (2018)

    Article  Google Scholar 

  37. Yue, L., Tian, D., Chen, W., Han, X., Yin, M.: Deep learning for heterogeneous medical data analysis. World Wide Web 23(5), 2715–2737 (2019). https://doi.org/10.1007/s11280-019-00764-z

    Article  Google Scholar 

  38. Yue, L., Tian, D., Jiang, J., Yao, L., Chen, W., Zhao, X.: Intention recognition from spatio-temporal representation of EEG signals. In: ADC, pp. 1–12 (2021)

    Google Scholar 

  39. Yue, L., Zhao, H., Yang, Y., Tian, D., Zhao, X., Yin, M.: A mimic learning method for disease risk prediction with incomplete initial data. In: Li, G., Yang, J., Gama, J., Natwichai, J., Tong, Y. (eds.) DASFAA 2019. LNCS, vol. 11448, pp. 392–396. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-18590-9_52

    Chapter  Google Scholar 

  40. Zhu, Z., Wang, Q., Li, B., Wu, W., Yan, J., Hu, W.: Distractor-aware Siamese networks for visual object tracking. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 101–117 (2018)

    Google Scholar 

  41. Zhu, Z., Wu, W., Zou, W., Yan, J.: End-to-end flow correlation tracking with spatial-temporal attention. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 548–557 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuwei Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Han, X., Qin, Q., Wang, Y., Zhang, Y., Li, H., Liu, Z. (2022). CS-Siam: Siamese-Type Network Tracking Method with Added Cluster Segmentation. In: Li, B., et al. Advanced Data Mining and Applications. ADMA 2022. Lecture Notes in Computer Science(), vol 13088. Springer, Cham. https://doi.org/10.1007/978-3-030-95408-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-95408-6_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-95407-9

  • Online ISBN: 978-3-030-95408-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics