Abstract
Computer simulation is a powerful tool for social scientists, but popular platforms require representing the semantics of the model being simulated in computer code, leading to models that are either expensive to construct, inefficient, or inaccurate. We introduce SCAMP (Social Causality using Agents with Multiple Perspectives), a social simulator that uses stigmergy to execute models that are written as concept maps and spreadsheets, without requiring any programming expertise on the part of the modeler. This Repast-based framework has been extensively exercised in the DARPA Ground Truth program to generate realistic social data for analysis by social scientists.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
In addition to the author, the SCAMP team included J.A. Morell of 4.699 LLC; L. Sappelsa of ANSER LLC; J. Greanya and S. Nadella of Wright State Research Institute (now Parallax Advanced Research). Kathleen Carley of CMU consulted on social network issues.
References
Papers by the author are available at https://www.abcresearch.org/abc/papers
Argonne National Laboratory: Repast Agent Simulation Toolkit. Argonne National Laboratory (2007). http://repast.sourceforge.net/
Busemeyer, J.R., Townsend, J.T.: Decision field theory: a dynamic-cognitive approach to decision making in an uncertain environment. Psychol. Rev. 100(3), 432–459 (1993)
Cioffi-Revilla, C.: Introduction to Computational Social Science, 2nd edn. Springer, Cham (2017). https://doi.org/10.1007/978-1-4471-5661-1
Crossman, J., Bechtel, R., Parunak, H.V.D., Brueckner, S.: Integrating dynamic social networks and spatio-temporal models for risk assessment, wargaming and planning. The Network Science Workshop, West Point, NY (2009)
de Marchi, S.: Computational and Mathematical Modeling in the Social Sciences. Cambridge University Press, Cambridge (2005)
Epstein, J.M.: Generative Social Science. Princeton University Press, Princeton (2006)
Gilbert, N., Troitzsch, K.G.: Simulation for the Social Scientist, 2nd edn. Open University Press, Buckingham (2005)
Grassé, P.-P.: La reconstruction du nid et les coordinations interindividuelles chezBellicositermes natalensis etCubitermes sp. la théorie de la stigmergie: Essai d’interprétation du comportement des termites constructeurs. Ins. Soc. 6, 41–84 (1959). https://doi.org/10.1007/BF02223791
Heuer, R.J., Jr., Pherson, R.H.: Structured Analytic Techniques for Intelligence Analysis. CQ Press, Washington, DC (2010)
Horling, B., et al.: The TÆMS White Paper. Multi-Agent Systems Lab, University of Massachusetts, Amherst (2004). http://mas.cs.umass.edu/pub/paper_detail.php/182
IHMC: IHMC CmapTools – Download, Pensacola, FL (2013). https://cmap.ihmc.us/cmaptools/
Kahneman, D., Tversky, A.: The simulation heuristic. In: Kahneman, D., Slovic, P., Tversky, A. (eds.) Judgment Under Uncertainty: Heuristics and Biases, pp. 201–208. Cambridge University Press, Cambridge (1982)
Klein, G.A.: Sources of Power: How People Make Decisions. MIT Press, Cambridge (1998)
Lindley, C.A.: Story and narrative structures in computer games. In: Bushoff, B. (ed.) Developing Interactive Narrative Content. High Text Verlag, München (2005)
Luke, S., Cioffi-Revilla, C., Panait, L., Sullivan, K., Balan, G.: MASON: a multiagent simulation environment. Simulation 81, 517–527 (2005)
Mosteller, F., Nogee, P.: An experimental measurement of utility. J. Polit. Econ. 59, 371–404 (1951)
Parunak, H.V.D.: A survey of environments and mechanisms for human-human stigmergy. In: Weyns, D., Parunak, H.V.D., Michel, F. (eds.) E4MAS 2005. LNCS (LNAI), vol. 3830, pp. 163–186. Springer, Heidelberg (2006). https://doi.org/10.1007/11678809_10
Parunak, H.V.D.: Real-time agent characterization and prediction. In: International Joint Conference on Autonomous Agents and Multi-Agent Systems (AAMAS 2007), Industrial Track, Honolulu, Hawaii, pp. 1421–1428, ACM (2007)
Parunak, H.V.D.: Psychology from stigmergy. In: Computational Social Science (CSS 2020), vol. (forthcoming). CSSSA, Santa Fe (2020)
Parunak, H.V.D., et al.: Stigmergic modeling of hierarchical task networks. In: Gennaro Tosto, H., Parunak, D. (eds.) MABS 2009. LNCS (LNAI), vol. 5683, pp. 98–109. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13553-8_9
Parunak, H.V.D., Bisson, R., Brueckner, S.A.: Agent interaction, multiple perspectives, and swarming simulation. In: Proceedings of the International Joint Conference on Autonomous Agents and Multi-Agent Systems (AAMAS 2010), pp. 549–556. IFAAMAS (2010)
Parunak, H.V.D., Brueckner, S.: Synthetic pheromones for distributed motion control. In: Proceedings of DARPA-JFACC Technical Symposium on Advances in Enterprise Control, DARPA (1999)
Parunak, H.V.D., Brueckner, S.: Concurrent modeling of alternative worlds with polyagents. In: Antunes, L., Takadama, K. (eds.) MABS 2006. LNCS (LNAI), vol. 4442, pp. 128–141. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76539-4_10
Parunak, H.V.D., Brueckner, S., Downs, E.A., Sappelsa, L.: Swarming estimation of realistic mental models. In: Giardini, F., Amblard, F. (eds.) MABS 2012. LNCS (LNAI), vol. 7838, pp. 43–55. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38859-0_4
Parunak, H.V.D., Brueckner, S.A.: Engineering swarming systems. In: Bergenti, F., Gleizes, M.-P., Zambonelli, F. (eds.) Methodologies and Software Engineering for Agent Systems, pp. 341–376. Kluwer (2004)
Parunak, H.V.D., Greanya, J., Morell, J.A., Nadella, S., Sappelsa, L.: SCAMP’s stigmergic model of social conflict. Comput. Math. Organ. Theory (2021). https://doi.org/10.1007/s10588-021-09347-8
Pynadath, D.V., et al.: Disaster World: Decision-theoretic agents for simulating population responses to hurricanes. Comput. Math. Organ. Theory (2021). (forthcoming)
Rager, S., Leung, A., Pinegar, S., Mangels, J., Poole, M.S., Contractor, N.: Groups, governance, and greed: the ACCESS world model. Comput. Math. Organ. Theory. (2021). https://doi.org/10.1007/s10588-021-09352-x
Richards, W., Finlayson, M.A., Winston, P.H.: Advancing computational models of narrative. MIT-CSAIL-TR-2009–063, MIT CSAIL, Cambridge (2009)
Sappelsa, L., Parunak, H.V.D., Brueckner, S.: The generic narrative space model as an intelligence analysis tool. Am. Intell. J. 31(2), 69–78 (2014)
Savage, E.L., Schruben, L.W., Yücesan, E.: On the generality of event-graph models. INFORMS J. Comput. 17(1), 3–9 (2005)
Shapiro, B.P., van den Broek, P., Fletcher, C.R.: Using story-based causal diagrams to analyze disagreements about complex events. Discourse Process. 20(1), 51–77 (1995)
Sheyner, O.M.: Scenario graphs and attack graphs. Thesis at Carnegie Mellon University, Department of Computer Science Department (2004)
Shivashankar, V.: Hierarchical goal networks: formalisms and algorithms for planning and acting. Thesis at University of Maryland, Department of Computer Science (2015)
Sullivan, K., Coletti, M., Luke, S.: GeoMASON: Geospatial support for MASON. George Mason University, Fairfax (2010). https://www.researchgate.net/publication/235955903_GeoMason_Geospatial_Support_for_MASON
Züfle, A., et al.: Urban life: a model of people and places. Comput. Math. Organ. Theory (2021). https://doi.org/10.1007/s10588-021-09348-7
Acknowledgements
The development of SCAMP was funded by the Defense Advanced Research Projects Agency (DARPA), under Cooperative Agreement HR00111820003. The content of this paper does not necessarily reflect the position or the policy of the US Government, and no official endorsement should be inferred.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this paper
Cite this paper
Parunak, H.V.D. (2022). Social Simulation for Non-hackers. In: Van Dam, K.H., Verstaevel, N. (eds) Multi-Agent-Based Simulation XXII. MABS 2021. Lecture Notes in Computer Science(), vol 13128. Springer, Cham. https://doi.org/10.1007/978-3-030-94548-0_1
Download citation
DOI: https://doi.org/10.1007/978-3-030-94548-0_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-94547-3
Online ISBN: 978-3-030-94548-0
eBook Packages: Computer ScienceComputer Science (R0)