Abstract
We present a method for building text corpora for the supervised learning of text-to-text anonymization while maintaining a strict privacy policy. In our solution, personal data entities are detected, classified, and anonymized. We use available machine-learning methods, like named-entity recognition, and improve their performance by grouping multiple entities into larger units based on the theory of tabular data anonymization. Experimental results on annotated Czech Facebook Messenger conversations reveal that our solution has recall comparable to human annotators. On the other hand, precision is much lower because of the low efficiency of the named entity recognition in the domain of social messaging conversations. The resulting anonymized text is of high utility because of the replacement methods that produce natural text.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Anonymity is property of data and anonymization is the process of altering data so that the protected individuals can no longer be identified directly or indirectly [26].
- 2.
F1 79.23 on fine types.
- 3.
e.g. “Ondřej Sotolář”, “Ondřeji” are replaced with “Jan Novák”, “Jane” respectively.
References
Beigi, G., Shu, K., Guo, R., Wang, S., Liu, H.: Privacy preserving text representation learning. In: Proceedings of the 30th ACM Conference on Hypertext and Social Media, pp. 275–276 (2019). https://doi.org/10.1145/3342220.3344925
Bojanowski, P., Grave, E., Joulin, A., Mikolov, T.: Enriching word vectors with subword information. Trans. Assoc. Comput. Linguist. 5, 135–146 (2017). https://doi.org/10.1162/tacl_a_00051
Chawla, S., Dwork, C., McSherry, F., Smith, A., Wee, H.: Toward privacy in public databases. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 363–385. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30576-7_20
Dasgupta, R., Ganesan, B., Kannan, A., Reinwald, B., Kumar, A.: Fine grained classification of personal data entities. Preprint at https://arxiv.org/abs/1811.09368 (2018)
GDPR: Regulation (EU) 2016/679 of the European parliament and of the council of 27 April 2016 on the protection of natural persons with regard to the processing of personal data and on the free movement of such data, and repealing directive 95/46/EC (general data protection regulation) (2016). https://op.europa.eu/en/publication-detail/-/publication/3e485e15-11bd-11e6-ba9a-01aa75ed71a1/language-en
Graliński, F., Jassem, K., Marcińczuk, M., Wawrzyniak, P.: Named entity recognition in machine anonymization. In: Recent Advances in Intelligent Information Systems, pp. 247–260 (2009)
Hassan, F., Domingo-Ferrer, J., Soria-Comas, J.: Anonymization of unstructured data via named-entity recognition. In: Torra, V., Narukawa, Y., Aguiló, I., González-Hidalgo, M. (eds.) MDAI 2018. LNCS (LNAI), vol. 11144, pp. 296–305. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00202-2_24
Hassan, F., Sánchez, D., Soria-Comas, J., Domingo-Ferrer, J.: Automatic anonymization of textual documents: detecting sensitive information via word embeddings. In: 2019 18th IEEE International Conference on Trust, Security and Privacy In Computing and Communications/13th IEEE International Conference on Big Data Science and Engineering (TrustCom/BigDataSE), pp. 358–365. IEEE (2019). https://doi.org/10.1109/TrustCom/BigDataSE.2019.00055
Kleinberg, B., Mozes, M., van der Toolen, Y., et al.: NETANOS-named entity-based text anonymization for open science. Preprint at https://osf.io/w9nhb (2017)
Marimon, M., et al.: Automatic de-identification of medical texts in Spanish: the MEDDOCAN track, corpus, guidelines, methods and evaluation of results. In: Proceedings of the Iberian Languages Evaluation Forum (IberLEF 2019) (2019)
Mosallanezhad, A., Beigi, G., Liu, H.: Deep reinforcement learning-based text anonymization against private-attribute inference. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 2360–2369 (2019). https://doi.org/10.18653/v1/D19-1240
Neamatullah, I., et al.: Automated de-identification of free-text medical records. BMC Med. Inform. Decis. Making 8(1), 1–17 (2008)
Porras-Segovia, A., et al.: Smartphone-based ecological momentary assessment (EMA) in psychiatric patients and student controls: a real-world feasibility study. J. Affect. Disord. 274, 733–741 (2020). https://doi.org/10.1016/j.jad.2020.05.067
Reeves, B., et al.: Screenomics: a framework to capture and analyze personal life experiences and the ways that technology shapes them. Hum.-Comput. Interact. 36(2), 150–201 (2019). https://doi.org/10.1080/07370024.2019.1578652
Samarati, P., Sweeney, L.: Protecting privacy when disclosing information: k-anonymity and its enforcement through generalization and suppression. Technical report, SRI International (1998)
Sánchez, D., Batet, M.: C-sanitized: a privacy model for document redaction and sanitization. J. Am. Soc. Inf. Sci. 67(1), 148–163 (2016). https://doi.org/10.1002/asi.23363
UK Data Service: Text anonymization helper tool (2016). https://bitbucket.org/ukda/ukds.tools.textanonhelper
Ševčíková, M., Žabokrtský, Z., Krůza, O.: Named entities in Czech: annotating data and developing NE tagger. In: Matoušek, V., Mautner, P. (eds.) TSD 2007. LNCS (LNAI), vol. 4629, pp. 188–195. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74628-7_26
Shu, L., Xu, H., Liu, B.: DOC: deep open classification of text documents. Preprint at https://arxiv.org/abs/1709.08716 (2017)
Stenetorp, P., Pyysalo, S., Topić, G., Ohta, T., Ananiadou, S., Tsujii, J.: BRAT: a web-based tool for NLP-assisted text annotation. In: Proceedings of the Demonstrations at the 13th Conference of the European Chapter of the Association for Computational Linguistics, pp. 102–107. Association for Computational Linguistics (2012)
Straková, J., Straka, M., Hajič, J.: Neural architectures for nested NER through linearization. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 5326–5331. Association for Computational Linguistics, Stroudsburg (2019)
Straková, J., Straka, M., Hajic, J.: Open-source tools for morphology, lemmatization, POS tagging and named entity recognition. In: Proceedings of 52nd Annual Meeting of the Association for Computational Linguistics: System Demonstrations, pp. 13–18 (2014)
Straková, J., Straka, M., Hajič, J.: Neural networks for featureless named entity recognition in Czech. In: Sojka, P., Horák, A., Kopeček, I., Pala, K. (eds.) TSD 2016. LNCS (LNAI), vol. 9924, pp. 173–181. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45510-5_20
Straková, J., Straka, M., Hajič, J.: Open-source tools for morphology, lemmatization, POS tagging and named entity recognition. In: Proceedings of 52nd Annual Meeting of the Association for Computational Linguistics: System Demonstrations, pp. 13–18. Association for Computational Linguistics, Baltimore, June 2014. http://www.aclweb.org/anthology/P/P14/P14-5003.pdf
Vico, H., Calegari, D.: Software architecture for document anonymization. Electron. Notes Theor. Comput. Sci. 314, 83–100 (2015). https://doi.org/10.1016/j.entcs.2015.05.006
WIP: Opinion 05/2014 on anonymisation techniques (2016). https://ec.europa.eu/justice/article-29/documentation/opinion-recommendation/files/2014/wp216_en.pdf
Acknowledgements
This work has received funding from the Czech Science Foundation, project no. 19-27828X.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Sotolář, O., Plhák, J., Šmahel, D. (2021). Towards Personal Data Anonymization for Social Messaging. In: Ekštein, K., Pártl, F., Konopík, M. (eds) Text, Speech, and Dialogue. TSD 2021. Lecture Notes in Computer Science(), vol 12848. Springer, Cham. https://doi.org/10.1007/978-3-030-83527-9_24
Download citation
DOI: https://doi.org/10.1007/978-3-030-83527-9_24
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-83526-2
Online ISBN: 978-3-030-83527-9
eBook Packages: Computer ScienceComputer Science (R0)