Nothing Special   »   [go: up one dir, main page]

Skip to main content

PEN4Rec: Preference Evolution Networks for Session-Based Recommendation

  • Conference paper
  • First Online:
Knowledge Science, Engineering and Management (KSEM 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12815))

Abstract

Session-based recommendation aims to predict user the next action based on historical behaviors in an anonymous session. For better recommendations, it is vital to capture user preferences as well as their dynamics. Besides, user preferences evolve over time dynamically and each preference has its own evolving track. However, most previous works neglect the evolving trend of preferences and can be easily disturbed by the effect of preference drifting. In this paper, we propose a novel Preference Evolution Networks for session-based Recommendation (PEN4Rec) to model preference evolving process by a two-stage retrieval from historical contexts. Specifically, the first-stage process integrates relevant behaviors according to recent items. Then, the second-stage process models the preference evolving trajectory over time dynamically and infer rich preferences. The process can strengthen the effect of relevant sequential behaviors during the preference evolution and weaken the disturbance from preference drifting. Extensive experiments on three public datasets demonstrate the effectiveness and superiority of the proposed model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The source code is available at https://github.com/zerohd4869/PEN4Rec.

  2. 2.

    https://2015.recsyschallenge.com/challenge.html.

  3. 3.

    https://cikm2016.cs.iupui.edu/cikm-cup/.

  4. 4.

    https://www.dtic.upf.edu/ocelma/MusicRecommendationDataset/lastfm-1K.html.

References

  1. Liu, Y., Ren, Z., Zhang, W., Che, W., Liu, T., Yin, D.: Keywords generation improves e-commerce session-based recommendation. In: WWW, pp. 1604–1614 (2020)

    Google Scholar 

  2. Zhang, L., Liu, P., Gulla, J.A.: Dynamic attention-integrated neural network for session-based news recommendation. Mach. Learn. 108(10), 1851–1875 (2019). https://doi.org/10.1007/s10994-018-05777-9

    Article  MathSciNet  MATH  Google Scholar 

  3. Schafer, J.B., Konstan, J.A., Riedl, J.: Recommender systems in e-commerce. In: EC, pp. 158–166 (1999)

    Google Scholar 

  4. Sarwar, B.M., Karypis, G., Konstan, J.A., Riedl, J.: Item-based collaborative filtering recommendation algorithms. In: WWW, pp. 285–295 (2001)

    Google Scholar 

  5. Rendle, S., Freudenthaler, C., Gantner, Z., Schmidt-Thieme, L.: BPR: bayesian personalized ranking from implicit feedback. In: UAI, pp. 452–461 (2009)

    Google Scholar 

  6. Koren, Y., Bell, R.M.: Advances in collaborative filtering. In: Recommender Systems Handbook, pp. 145–186 (2011)

    Google Scholar 

  7. Rendle, S., Freudenthaler, C., Schmidt-Thieme, L.: Factorizing personalized Markov chains for next-basket recommendation. In: WWW, pp. 811–820 (2010)

    Google Scholar 

  8. Hidasi, B., Karatzoglou, A., Baltrunas, L., Tikk, D.: Session-based recommendations with recurrent neural networks. In: ICLR (Poster) (2016)

    Google Scholar 

  9. Li, J., Ren, P., Chen, Z., Ren, Z., Lian, T., Ma, J.: Neural attentive session-based recommendation. In: CIKM pp. 1419–1428. ACM (2017)

    Google Scholar 

  10. Wang, M., Ren, P., Mei, L., Chen, Z., Ma, J., de Rijke, M.: A collaborative session-based recommendation approach with parallel memory modules. In: SIGIR, pp. 345–354 (2019)

    Google Scholar 

  11. Liu, Q., Zeng, Y., Mokhosi, R., Zhang, H.: STAMP: short-term attention/memory priority model for session-based recommendation. In: KDD, pp. 1831–1839 (2018)

    Google Scholar 

  12. Wu, S., Tang, Y., Zhu, Y., Wang, L., Xie, X., Tan, T.: Session-based recommendation with graph neural networks. In: AAAI, pp. 346–353 (2019)

    Google Scholar 

  13. Xu, C., et al.: Graph contextualized self-attention network for session-based recommendation. In: IJCAI, pp. 3940–3946 (2019)

    Google Scholar 

  14. Jordan, M.I.: Serial order : a parallel distributed processing approach. Institute for Cognitive Science Report (1986)

    Google Scholar 

  15. Ren, P., Chen, Z., Li, J., Ren, Z., Ma, J., de Rijke, M.: Repeatnet: a repeat aware neural recommendation machine for session-based recommendation. In: AAAI, pp. 4806–4813. AAAI Press (2019)

    Google Scholar 

  16. Miller, A.H., Fisch, A., Dodge, J., Karimi, A., Bordes, A., Weston, J.: Key-value memory networks for directly reading documents. In: EMNLP, pp. 1400–1409 (2016)

    Google Scholar 

  17. Chen, T., Wong, R.C.: Handling information loss of graph neural networks for session-based recommendation. In: KDD, pp. 1172–1180 (2020)

    Google Scholar 

  18. Pan, Z., Cai, F., Chen, W., Chen, H., de Rijke, M.: Star graph neural networks for session-based recommendation. In: CIKM, pp. 1195–1204 (2020)

    Google Scholar 

  19. Qiu, R., Li, J., Huang, Z., Yin, H.: Rethinking the item order in session-based recommendation with graph neural networks. In: CIKM, pp. 579–588 (2019)

    Google Scholar 

  20. Li, Y., Tarlow, D., Brockschmidt, M., Zemel, R.S.: Gated graph sequence neural networks. In: ICLR (Poster) (2016)

    Google Scholar 

  21. Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The graph neural network model. IEEE Trans. Neural Networks 20(1), 61–80 (2009)

    Article  Google Scholar 

  22. Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: ICLR (Poster). OpenReview.net (2018)

    Google Scholar 

  23. Xiong, C., Merity, S., Socher, R.: Dynamic memory networks for visual and textual question answering. ICML 48, 2397–2406 (2016)

    Google Scholar 

  24. Bertin-Mahieux, T., Ellis, D.P., Whitman, B., Lamere, P.: The million song dataset. In: ISMIR (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hu, D., Wei, L., Zhou, W., Huai, X., Fang, Z., Hu, S. (2021). PEN4Rec: Preference Evolution Networks for Session-Based Recommendation. In: Qiu, H., Zhang, C., Fei, Z., Qiu, M., Kung, SY. (eds) Knowledge Science, Engineering and Management. KSEM 2021. Lecture Notes in Computer Science(), vol 12815. Springer, Cham. https://doi.org/10.1007/978-3-030-82136-4_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-82136-4_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-82135-7

  • Online ISBN: 978-3-030-82136-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics