Abstract
Session-based recommendation aims to predict user the next action based on historical behaviors in an anonymous session. For better recommendations, it is vital to capture user preferences as well as their dynamics. Besides, user preferences evolve over time dynamically and each preference has its own evolving track. However, most previous works neglect the evolving trend of preferences and can be easily disturbed by the effect of preference drifting. In this paper, we propose a novel Preference Evolution Networks for session-based Recommendation (PEN4Rec) to model preference evolving process by a two-stage retrieval from historical contexts. Specifically, the first-stage process integrates relevant behaviors according to recent items. Then, the second-stage process models the preference evolving trajectory over time dynamically and infer rich preferences. The process can strengthen the effect of relevant sequential behaviors during the preference evolution and weaken the disturbance from preference drifting. Extensive experiments on three public datasets demonstrate the effectiveness and superiority of the proposed model.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
References
Liu, Y., Ren, Z., Zhang, W., Che, W., Liu, T., Yin, D.: Keywords generation improves e-commerce session-based recommendation. In: WWW, pp. 1604–1614 (2020)
Zhang, L., Liu, P., Gulla, J.A.: Dynamic attention-integrated neural network for session-based news recommendation. Mach. Learn. 108(10), 1851–1875 (2019). https://doi.org/10.1007/s10994-018-05777-9
Schafer, J.B., Konstan, J.A., Riedl, J.: Recommender systems in e-commerce. In: EC, pp. 158–166 (1999)
Sarwar, B.M., Karypis, G., Konstan, J.A., Riedl, J.: Item-based collaborative filtering recommendation algorithms. In: WWW, pp. 285–295 (2001)
Rendle, S., Freudenthaler, C., Gantner, Z., Schmidt-Thieme, L.: BPR: bayesian personalized ranking from implicit feedback. In: UAI, pp. 452–461 (2009)
Koren, Y., Bell, R.M.: Advances in collaborative filtering. In: Recommender Systems Handbook, pp. 145–186 (2011)
Rendle, S., Freudenthaler, C., Schmidt-Thieme, L.: Factorizing personalized Markov chains for next-basket recommendation. In: WWW, pp. 811–820 (2010)
Hidasi, B., Karatzoglou, A., Baltrunas, L., Tikk, D.: Session-based recommendations with recurrent neural networks. In: ICLR (Poster) (2016)
Li, J., Ren, P., Chen, Z., Ren, Z., Lian, T., Ma, J.: Neural attentive session-based recommendation. In: CIKM pp. 1419–1428. ACM (2017)
Wang, M., Ren, P., Mei, L., Chen, Z., Ma, J., de Rijke, M.: A collaborative session-based recommendation approach with parallel memory modules. In: SIGIR, pp. 345–354 (2019)
Liu, Q., Zeng, Y., Mokhosi, R., Zhang, H.: STAMP: short-term attention/memory priority model for session-based recommendation. In: KDD, pp. 1831–1839 (2018)
Wu, S., Tang, Y., Zhu, Y., Wang, L., Xie, X., Tan, T.: Session-based recommendation with graph neural networks. In: AAAI, pp. 346–353 (2019)
Xu, C., et al.: Graph contextualized self-attention network for session-based recommendation. In: IJCAI, pp. 3940–3946 (2019)
Jordan, M.I.: Serial order : a parallel distributed processing approach. Institute for Cognitive Science Report (1986)
Ren, P., Chen, Z., Li, J., Ren, Z., Ma, J., de Rijke, M.: Repeatnet: a repeat aware neural recommendation machine for session-based recommendation. In: AAAI, pp. 4806–4813. AAAI Press (2019)
Miller, A.H., Fisch, A., Dodge, J., Karimi, A., Bordes, A., Weston, J.: Key-value memory networks for directly reading documents. In: EMNLP, pp. 1400–1409 (2016)
Chen, T., Wong, R.C.: Handling information loss of graph neural networks for session-based recommendation. In: KDD, pp. 1172–1180 (2020)
Pan, Z., Cai, F., Chen, W., Chen, H., de Rijke, M.: Star graph neural networks for session-based recommendation. In: CIKM, pp. 1195–1204 (2020)
Qiu, R., Li, J., Huang, Z., Yin, H.: Rethinking the item order in session-based recommendation with graph neural networks. In: CIKM, pp. 579–588 (2019)
Li, Y., Tarlow, D., Brockschmidt, M., Zemel, R.S.: Gated graph sequence neural networks. In: ICLR (Poster) (2016)
Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The graph neural network model. IEEE Trans. Neural Networks 20(1), 61–80 (2009)
Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: ICLR (Poster). OpenReview.net (2018)
Xiong, C., Merity, S., Socher, R.: Dynamic memory networks for visual and textual question answering. ICML 48, 2397–2406 (2016)
Bertin-Mahieux, T., Ellis, D.P., Whitman, B., Lamere, P.: The million song dataset. In: ISMIR (2011)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Hu, D., Wei, L., Zhou, W., Huai, X., Fang, Z., Hu, S. (2021). PEN4Rec: Preference Evolution Networks for Session-Based Recommendation. In: Qiu, H., Zhang, C., Fei, Z., Qiu, M., Kung, SY. (eds) Knowledge Science, Engineering and Management. KSEM 2021. Lecture Notes in Computer Science(), vol 12815. Springer, Cham. https://doi.org/10.1007/978-3-030-82136-4_41
Download citation
DOI: https://doi.org/10.1007/978-3-030-82136-4_41
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-82135-7
Online ISBN: 978-3-030-82136-4
eBook Packages: Computer ScienceComputer Science (R0)