Abstract
Neuro-fuzzy models of management nowadays are becoming more widespread in various industries. Many papers deal with the synthesis of neuro-fuzzy models of diagnostics in economics, medicine, and industrial tasks. Most of them are based on iterative topologies of artificial neural networks and traditional fuzzy inference systems. The latter ones do not always ensure high accuracy, which affects the entire system that is being developed. This paper presents a new neuro-fuzzy diagnostic system based on non-iterative ANN and a new fuzzy model, a T-controller. The flowchart of the system proposed is given. All the operation stages of the system are described in detail, from the collection and preliminary processing of data to two different stages of diagnostics. The last stage can be performed manually or using a T-controller. Simulation of the system is conducted by means of a real set of data. The task was to predict the generator power based on a set of 13 independent variables. To improve the accuracy of the system performance, the Padé polynomial has been used, the coefficients of which are synthesized on the basis of a pre-trained SGTM neural-like structure using an optimization simulated annealing simulation. High accuracy of the system performance is shown using various performance indicators. The coefficients of the required polynomial are synthesized, which allows of fulfilling the task in a more understandable form.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Auzinger, W., Obelovska, K., Stolyarchuk, R.: A modified gomory-hu algorithm with DWDM-oriented technology. In: Large-Scale Scientific Computing, pp. 547–554. Springer, Cham (2019)
Babichev, S., Škvor, J.: Technique of gene expression profiles extraction based on the complex use of clustering and classification methods. Diagnostics 10, 584 (2020). https://doi.org/10.3390/diagnostics10080584
Babichev, S., Durnyak, B., Zhydetskyy, V., Pikh, I., Senkivskyy, V.: Application of optics density-based clustering algorithm using inductive methods of complex system analysis. In: IEEE 2019 14th International Scientific and Technical Conference on Computer Sciences and Information Technologies, CSIT 2019 - Proceedings, pp. 169–172 (2019). https://doi.org/10.1109/STC-CSIT.2019.8929869
Berezsky, O., et al.: Fuzzy system for breast disease diagnosing based on image analysis. CEUR-WS.org. 2488, 69–83 (2019)
Bodyanskiy, Y., Pirus, A., Deineko, A.: Multilayer radial-basis function network and its learning. In: 2020 IEEE 15th International Conference on Computer Sciences and Information Technologies (CSIT), pp. 92–95 (2020)
Bodyanskiy, Y., Deineko, A.O., Kutsenko, Y.: On-line kernel clustering based on the general regression neural network and t Kohonen’s self-organizing map. Autom. Control Comput. Sci. 51, 55–62 (2017). https://doi.org/10.3103/S0146411617010023
Bodyanskiy, Y., Antonenko, T.: Deep neo-fuzzy neural network and its accelerated learning. In: Proceedings of the 2020 IEEE Third International Conference on Data Stream Mining and Processing (DSMP), pp. 67–71. IEEE (2020)
Chukhrai, N., Koval, Z.: Essence and classification of assessment methods for marketing strategies’ efficiency of cost-oriented enterprises. Actual Probl. Econ. 145, 118–127 (2013)
Chumachenko, D., Chumachenko, T., Meniailov, I., Pyrohov, P., Kuzin, I., Rodyna, R.O.L.D.P.: Simulation and forecasting of the coronavirus disease (covid-19) propagation in Ukraine based on machine learning approach. In: Data Stream Mining and Processing, pp. 372–382. Springer, Cham (2020)
Chumachenko, D., Sokolov, O., Yakovlev, S.: Fuzzy recurrent mappings in multiagent simulation of population dynamics systems. Int. J. Comput. 19(2), 290–297 (2020). https://doi.org/10.47839/ijc.19.2.1773
Das, H., Naik, B., Behera, H.S.: A hybrid neuro-fuzzy and feature reduction model for classification. In: Advances in Fuzzy Systems, pp. 1–15. Hindawi (2020). https://doi.org/10.1155/2020/4152049
Getaneh, G., Tiruneha, A., Robinson, F., Vuppuluri, S.: Neuro-fuzzy systems in construction engineering and management research. Autom. Constr. 119 (2020). https://doi.org/10.1016/j.autcon.2020.103348
Izonin, I., Tkachenko, R., Kryvinska, N., Tkachenko, P., Greguš ml., M.: Multiple linear regression based on coefficients identification using non-iterative SGTM neural-like structure. In: Rojas, I., Joya, G., Catala, A. (eds.) Advances in Computational Intelligence, pp. 467–479. Springer International Publishing, Cham (2019)
Kotsovsky, V., Batyuk, A., Yurchenko, M.: New approaches in the learning of complex-valued neural networks. In: 2020 IEEE Third International Conference on Data Stream Mining and Processing (DSMP), pp. 50–54 (2020)
Kotsovsky, V., Geche, F., Batyuk, A.: On the computational complexity of learning bithreshold neural units and networks. In: Lecture Notes in Computational Intelligence and Decision Making, pp. 189–202. Springer, Cham (2019)
Liancun, Z., Xinxin, Z.: Modeling and Analysis of Modern Fluid Problems. Elsevier, Goong Chen edn. (2017). https://doi.org/10.1016/C2016-0-01480-8
Mochurad, L., Yatskiv, M.: Simulation of a human operator’s response to stressors under production conditions. CEUR-WS 2753, 156 (2020)
Subbotin, S.: The neuro-fuzzy network synthesis and simplification on precedents in problems of diagnosis and pattern recognition. Opt. Mem. Neural Netw. 22, 97 (2013). https://doi.org/10.3103/S1060992X13020082
Teslyuk, V., Kazarian, A., Kryvinska, N., Tsmots, I.: Optimal artificial neural network type selection method for usage in smart house systems. Sensors 21, 47 (2021). https://doi.org/10.3390/s21010047
Tkachenko, R., Izonin, I., Vitynskyi, P., Lotoshynska, N., Pavlyuk, O.: Development of the non-iterative supervised learning predictor based on the ito decomposition and SGTM neural-like structure for managing medical insurance costs. Data 3, 46 (2018). https://doi.org/10.3390/data3040046
Verbenko, I., Tkachenko, R.: Gantry and bridge cranes neuro-fuzzy control by using neural-like structures of geometric transformations. Czasopismo Techniczne 2013, 53 (2014). https://doi.org/10.4467/2353737XCT.14.057.3965
Wang, C., Shakhovska, N., Sachenko, A., Komar, M.A.: New approach for missing data imputation in big data interface. Inf. Technol. Control 49, 541–555 (2020). https://doi.org/10.5755/j01.itc.49.4.27386
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Tkachenko, R., Izonin, I., Tkachenko, P. (2022). Neuro-Fuzzy Diagnostics Systems Based on SGTM Neural-Like Structure and T-Controller. In: Babichev, S., Lytvynenko, V. (eds) Lecture Notes in Computational Intelligence and Decision Making. ISDMCI 2021. Lecture Notes on Data Engineering and Communications Technologies, vol 77. Springer, Cham. https://doi.org/10.1007/978-3-030-82014-5_47
Download citation
DOI: https://doi.org/10.1007/978-3-030-82014-5_47
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-82013-8
Online ISBN: 978-3-030-82014-5
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)