Nothing Special   »   [go: up one dir, main page]

Skip to main content

Real-Time Sensing, Reasoning and Adaptation for Computer Vision Systems

  • Conference paper
  • First Online:
Lecture Notes in Computational Intelligence and Decision Making (ISDMCI 2021)

Abstract

Automatically recognition and classification of biological objects under microscope methods are shown in paper. Problem of separated of white-black and color images is studied. Method of separation of different type of objects (visual diapason of specter) with compare results is shown in the paper. Quality of segmentation methods analyses is presented in the paper. Schemes and table results of segmentation are exist. Methods of pattern recognition applicability for Computer Vision Systems of analysis and pattern recognition scenes in the visual spectrum are studied in the paper. The methods and algorithms can be used in Real-time Sensing, white-black and color patterns, reasoning and adaptation for Computer Vision Systems too. Example of such systems is the glasses for people with visual impairments; when the camera mounted in glasses receives and transmits environment data, and the contact plate with electrical leads via e-pulse transmits data to the eye retina. Author analyzed several pattern recognition methods that will allow to process data of the environment for the brain. This will make the visually impaired persons with sub reality vision better orientation in environment. Theoretical basic, algorithms and their compared for apply is presented in paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abbas, M., El-Zoghabi, A., Shoukry, A.: Denmune: Density peak based clustering using mutual nearest neighbors. Pattern Recogn. 109, 11–15 (2021). Article number 107589. https://doi.org/10.1016/j.patcog.2020.107589

  2. Bayro-Corrochano, E.: Geometric Algebra Applications Vol. I. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-74830-6

    Book  MATH  Google Scholar 

  3. Birda, T.: Otsu method, codding (2009). https://www.codeproject.com/Articles/38319/Famous-Otsu-Thresholding-in-C

  4. Brilakis, I., Haas, C.: Infrastructure Computer Vision, p. 390. Butterworth-Heinemann (2020)

    Google Scholar 

  5. Cordis, R.: Robots of tomorrow with intelligent visual capabilities. Research*eu Results Mag., no. 62, art. no. 38 (May 2017)

    Google Scholar 

  6. Dronyuk, I., Nazarkevych, M.: Development of printed packaging protection technology by means of back-ground nets. In: 2009 10th International Conference-The Experience of Designing and Application of CAD Systems in Microelectronics, vol. 26, pp. 401–403. IEEE (2009)

    Google Scholar 

  7. Duda, R., Hart, P., Stork, D.: Pattern Classification, 2nd edn., p. 738. Wiley (1999)

    Google Scholar 

  8. Gonzalez, R.: Digital Image Processing, p. 976. Pearson Hall (2008). http://sdeuoc.ac.in/sites/default/files/sde_videos

  9. Hrytsyk, V.: Future of artificial intelligence: treats and possibility. Inf. Theor. Appl. 24(1), 91–99 (2017). http://www.foibg.com/ijita/vol24/ijita24-01-p07.pdf

  10. Hrytsyk, V.: Study methods of image segmentation for intelligent surveillance systems. In: Computational Linguistics and Intelligent Systems, vol. 2, pp. 171–176 (2018). http://ena.lp.edu.ua:8080/xmlui/handle/ntb/42565?show=full

  11. Hrytsyk, V., Grondzal, A., Bilenkyj, A.: Augmented reality for people with disabilities, pp. 188–191 (2015). https://doi.org/10.1109/STC-CSIT.2015.7325462

  12. Hrytsyk, V., Pelykh, N.: Classification problem of biological objects. Bull. Nat. Univ. “Lvivska Politechnika” Comput. Sci. Inf. Technol. 650, 100–103 (2009)

    Google Scholar 

  13. Kaku, M.: Hyperspace: A Scientific Odyssey Through Parallel Universes, Time Warps, and the Tenth Dimension, p. 384 (2016)

    Google Scholar 

  14. Korzynska, A., Roszkowiak, L., Lopez, C.e.a.: Validation of various adaptive threshold methods of segmentation applied to follicular lymphoma digital images stained with 3,3’ - Diaminobenzidine and Haematoxylin. Diagn. Pathol. 8(1), 1–21 (2013). https://doi.org/10.1186/1746-1596-8-48

  15. Krak, I., Barmak, O., Manziuk, E.: Using visual analytics to develop human and machine-centric models: a review of approaches and proposed information technology. Comput. Intell., 1–26 (2020). https://doi.org/10.1111/coin.12289

  16. Luque, A., Carrasco, A., Martín, A., Heras, A.: The impact of class imbalance in classification performance metrics based on the binary confusion matrix. Pattern Recogn. 91, 216–231 (2019). https://doi.org/10.1016/j.patcog.2019.02.023

    Article  Google Scholar 

  17. Madala, H., Ivakhnenko, A.: Clusterization and recognition, Chap. 5. In: Inductive Learning Algorithms for Complex Systems Modeling, p. 380. CRC Press (1994)

    Google Scholar 

  18. Nazarkevych, M., Logoyda, M., Troyan, O., Vozniy, Y., Shpak, Z.: The Ateb-Gabor filter for fingerprinting. In: Shakhovska, N., Medykovskyy, M.O. (eds.) CSIT 2019. AISC, vol. 1080, pp. 247–255. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-33695-0_18

    Chapter  Google Scholar 

  19. Nazarkevych, M., Lotoshynska, N., Klyujnyk, I., Voznyi, Y., Forostyna, S., Maslanych, I.: Complexity evaluation of the Ateb-Gabor filtration algorithm in biometric security systems. In: 2019 IEEE 2nd Ukraine Conference on Electrical and Computer Engineering (UKRCON), vol. 26, pp. 961–964 (2019). https://doi.org/10.1109/UKRCON.2019.8879945

  20. Niblack, W.: An Introduction to Digital Image Processing, vol. 26, p. 215. Strandberg Publishing Company (1985)

    Google Scholar 

  21. Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9, 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076

    Article  Google Scholar 

  22. Pun, W., Linxui, X., Zilin, H.: Imputation method used in missing traffic. Artif. Intell. Algorithms Appl. 11, 662–675 (2019). https://doi.org/10.1007/978-981-15-5577-0_53

    Article  Google Scholar 

  23. Russ, J.: The Image Processing Handbook, p. 832 (2006). https://doi.org/10.1201/9780203881095

  24. Saha, J., Mukherjee, J.: CNAK: cluster number assisted k-means. Pattern Recogn. 110, 11–15 (2021). Article number 107625. https://doi.org/10.1016/j.patcog.2020.107625

  25. Sauvola, J., Pietikainen, M.: Adaptive document image binarization. Pattern Recogn. 33(2), 225–236 (2000). https://doi.org/10.1016/S0031-3203(99)00055-2

    Article  Google Scholar 

  26. Sezgin, M., Sankur, B.: Survey over image thresholding techniques and quantitative performance evaluation. J. Electr. Imaging 13(1), 146–165 (2004). https://doi.org/10.1117/1.1631315

    Article  Google Scholar 

  27. Trier, O.D., Jain, A.K.: Goal-directed evaluation of binarization methods. IEEE Trans. Pattern Anal. Mach. Intel. 26, 1191–1201 (1995). https://doi.org/10.1109/34.476511

    Article  Google Scholar 

  28. Vala, H., Baxi, A.: A review on Otsu image segmentation algorithm. Int. J. Adv. Res. Comput. Eng. Technol. (IJARCET) 2(2), 387–389 (2013)

    Google Scholar 

  29. Zack, G., Rogers, W., Latt, S.: Automatic measurement of sister chromatid exchange frequency. J. Histochem. Cytochem. 25(7), 741–753 (1977). https://doi.org/10.1177/25.7.70454

    Article  Google Scholar 

  30. Zhang, Y., He, Z.: Agnostic attribute segmentation of dynamic scenes with limited spatio-temporal resolution. Pattern Recogn. 91(1), 261–271 (2019). https://doi.org/10.1016/j.patcog.2019.02.026

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hrytsyk, V., Nazarkevych, M. (2022). Real-Time Sensing, Reasoning and Adaptation for Computer Vision Systems. In: Babichev, S., Lytvynenko, V. (eds) Lecture Notes in Computational Intelligence and Decision Making. ISDMCI 2021. Lecture Notes on Data Engineering and Communications Technologies, vol 77. Springer, Cham. https://doi.org/10.1007/978-3-030-82014-5_39

Download citation

Publish with us

Policies and ethics