Abstract
Automatically recognition and classification of biological objects under microscope methods are shown in paper. Problem of separated of white-black and color images is studied. Method of separation of different type of objects (visual diapason of specter) with compare results is shown in the paper. Quality of segmentation methods analyses is presented in the paper. Schemes and table results of segmentation are exist. Methods of pattern recognition applicability for Computer Vision Systems of analysis and pattern recognition scenes in the visual spectrum are studied in the paper. The methods and algorithms can be used in Real-time Sensing, white-black and color patterns, reasoning and adaptation for Computer Vision Systems too. Example of such systems is the glasses for people with visual impairments; when the camera mounted in glasses receives and transmits environment data, and the contact plate with electrical leads via e-pulse transmits data to the eye retina. Author analyzed several pattern recognition methods that will allow to process data of the environment for the brain. This will make the visually impaired persons with sub reality vision better orientation in environment. Theoretical basic, algorithms and their compared for apply is presented in paper.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abbas, M., El-Zoghabi, A., Shoukry, A.: Denmune: Density peak based clustering using mutual nearest neighbors. Pattern Recogn. 109, 11–15 (2021). Article number 107589. https://doi.org/10.1016/j.patcog.2020.107589
Bayro-Corrochano, E.: Geometric Algebra Applications Vol. I. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-74830-6
Birda, T.: Otsu method, codding (2009). https://www.codeproject.com/Articles/38319/Famous-Otsu-Thresholding-in-C
Brilakis, I., Haas, C.: Infrastructure Computer Vision, p. 390. Butterworth-Heinemann (2020)
Cordis, R.: Robots of tomorrow with intelligent visual capabilities. Research*eu Results Mag., no. 62, art. no. 38 (May 2017)
Dronyuk, I., Nazarkevych, M.: Development of printed packaging protection technology by means of back-ground nets. In: 2009 10th International Conference-The Experience of Designing and Application of CAD Systems in Microelectronics, vol. 26, pp. 401–403. IEEE (2009)
Duda, R., Hart, P., Stork, D.: Pattern Classification, 2nd edn., p. 738. Wiley (1999)
Gonzalez, R.: Digital Image Processing, p. 976. Pearson Hall (2008). http://sdeuoc.ac.in/sites/default/files/sde_videos
Hrytsyk, V.: Future of artificial intelligence: treats and possibility. Inf. Theor. Appl. 24(1), 91–99 (2017). http://www.foibg.com/ijita/vol24/ijita24-01-p07.pdf
Hrytsyk, V.: Study methods of image segmentation for intelligent surveillance systems. In: Computational Linguistics and Intelligent Systems, vol. 2, pp. 171–176 (2018). http://ena.lp.edu.ua:8080/xmlui/handle/ntb/42565?show=full
Hrytsyk, V., Grondzal, A., Bilenkyj, A.: Augmented reality for people with disabilities, pp. 188–191 (2015). https://doi.org/10.1109/STC-CSIT.2015.7325462
Hrytsyk, V., Pelykh, N.: Classification problem of biological objects. Bull. Nat. Univ. “Lvivska Politechnika” Comput. Sci. Inf. Technol. 650, 100–103 (2009)
Kaku, M.: Hyperspace: A Scientific Odyssey Through Parallel Universes, Time Warps, and the Tenth Dimension, p. 384 (2016)
Korzynska, A., Roszkowiak, L., Lopez, C.e.a.: Validation of various adaptive threshold methods of segmentation applied to follicular lymphoma digital images stained with 3,3’ - Diaminobenzidine and Haematoxylin. Diagn. Pathol. 8(1), 1–21 (2013). https://doi.org/10.1186/1746-1596-8-48
Krak, I., Barmak, O., Manziuk, E.: Using visual analytics to develop human and machine-centric models: a review of approaches and proposed information technology. Comput. Intell., 1–26 (2020). https://doi.org/10.1111/coin.12289
Luque, A., Carrasco, A., Martín, A., Heras, A.: The impact of class imbalance in classification performance metrics based on the binary confusion matrix. Pattern Recogn. 91, 216–231 (2019). https://doi.org/10.1016/j.patcog.2019.02.023
Madala, H., Ivakhnenko, A.: Clusterization and recognition, Chap. 5. In: Inductive Learning Algorithms for Complex Systems Modeling, p. 380. CRC Press (1994)
Nazarkevych, M., Logoyda, M., Troyan, O., Vozniy, Y., Shpak, Z.: The Ateb-Gabor filter for fingerprinting. In: Shakhovska, N., Medykovskyy, M.O. (eds.) CSIT 2019. AISC, vol. 1080, pp. 247–255. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-33695-0_18
Nazarkevych, M., Lotoshynska, N., Klyujnyk, I., Voznyi, Y., Forostyna, S., Maslanych, I.: Complexity evaluation of the Ateb-Gabor filtration algorithm in biometric security systems. In: 2019 IEEE 2nd Ukraine Conference on Electrical and Computer Engineering (UKRCON), vol. 26, pp. 961–964 (2019). https://doi.org/10.1109/UKRCON.2019.8879945
Niblack, W.: An Introduction to Digital Image Processing, vol. 26, p. 215. Strandberg Publishing Company (1985)
Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9, 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076
Pun, W., Linxui, X., Zilin, H.: Imputation method used in missing traffic. Artif. Intell. Algorithms Appl. 11, 662–675 (2019). https://doi.org/10.1007/978-981-15-5577-0_53
Russ, J.: The Image Processing Handbook, p. 832 (2006). https://doi.org/10.1201/9780203881095
Saha, J., Mukherjee, J.: CNAK: cluster number assisted k-means. Pattern Recogn. 110, 11–15 (2021). Article number 107625. https://doi.org/10.1016/j.patcog.2020.107625
Sauvola, J., Pietikainen, M.: Adaptive document image binarization. Pattern Recogn. 33(2), 225–236 (2000). https://doi.org/10.1016/S0031-3203(99)00055-2
Sezgin, M., Sankur, B.: Survey over image thresholding techniques and quantitative performance evaluation. J. Electr. Imaging 13(1), 146–165 (2004). https://doi.org/10.1117/1.1631315
Trier, O.D., Jain, A.K.: Goal-directed evaluation of binarization methods. IEEE Trans. Pattern Anal. Mach. Intel. 26, 1191–1201 (1995). https://doi.org/10.1109/34.476511
Vala, H., Baxi, A.: A review on Otsu image segmentation algorithm. Int. J. Adv. Res. Comput. Eng. Technol. (IJARCET) 2(2), 387–389 (2013)
Zack, G., Rogers, W., Latt, S.: Automatic measurement of sister chromatid exchange frequency. J. Histochem. Cytochem. 25(7), 741–753 (1977). https://doi.org/10.1177/25.7.70454
Zhang, Y., He, Z.: Agnostic attribute segmentation of dynamic scenes with limited spatio-temporal resolution. Pattern Recogn. 91(1), 261–271 (2019). https://doi.org/10.1016/j.patcog.2019.02.026
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Hrytsyk, V., Nazarkevych, M. (2022). Real-Time Sensing, Reasoning and Adaptation for Computer Vision Systems. In: Babichev, S., Lytvynenko, V. (eds) Lecture Notes in Computational Intelligence and Decision Making. ISDMCI 2021. Lecture Notes on Data Engineering and Communications Technologies, vol 77. Springer, Cham. https://doi.org/10.1007/978-3-030-82014-5_39
Download citation
DOI: https://doi.org/10.1007/978-3-030-82014-5_39
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-82013-8
Online ISBN: 978-3-030-82014-5
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)