Nothing Special   »   [go: up one dir, main page]

Skip to main content

Method for Adaptive Semantic Testing of Educational Materials Level of Knowledge

  • Conference paper
  • First Online:
Lecture Notes in Computational Intelligence and Decision Making (ISDMCI 2021)

Abstract

The article considers the method that allows to calculate the estimation of knowledge level of educational materials by using indicators of semantic importance of key terms for adaptive selection of test tasks in testing. Each test task allows to purposefully check the level of knowledge of separate semantic units of educational materials – semantic terms (words, phrases). It is assumed that increasing the depth of learning of educational material semantic content has the effect of learning less semantically important units of educational materials. Semantic terms are related to the semantic structure of educational material in the form of rubricational system. Test tasks are related to fragments of educational material content, the knowledge level of which they test. In the process of testing, the level of knowledge of each of semantic structure elements of the educational material is consistently adaptively determined, and the final grade is calculated based on these results. As a result of adaptive selection of test tasks, their maximum possible diversity in the final set is reached, because following criteria are considered: test task has not been used yet, relevant fragment of educational content has not been checked, test tasks of corresponding type were used the least, the test task does not contain less important semantic units. The developed method of adaptive semantic testing of knowledge level of educational materials makes possible to use different algorithms for starting testing (regressive, progressive, medianic, etc.) and different algorithms for knowledge level estimation (average, absolute limit, etc.). Applied investigations of the effectiveness of the developed method in comparison with the traditional algorithm for selecting test tasks established, that testing speed increased an average of 20.53% faster test, and to determine the level of knowledge required the use of an average of 19.33% fewer test tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aggarwal, C.C., Zhai, C.: Text Data. Springer (2012)

    Google Scholar 

  2. Baki, I., Sahraoui, H.: Multi-step learning and adaptive search for learning complex model transformations for examples. ACM Trans. Softw. Eng. Methodol. 25(3), 1–37 (2016). https://doi.org/10.1145/2904904

    Article  Google Scholar 

  3. Barmak, O., Krak, I., Mazurets, O., Pavlov, S., Smolarz, A., Wojcik, W.: Research of efficiency of information technology for creation of semantic structure of educational materials. In: Lytvynenko, V., Babichev, S., Wójcik, W., Vynokurova, O., Vyshemyrskaya, S., Radetskaya, S. (eds.) ISDMCI 2019. AISC, vol. 1020, pp. 554–569. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-26474-1_38

    Chapter  Google Scholar 

  4. Barmak, O., et al.: Information technology for creation of semantic structure of educational materials. Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments Wilga, Poland (11176) (2019). https://doi.org/10.1117/12.2537064

  5. Brusilovsky, P., Rollinger, C., Peyl, C.: Adaptive and intelligent technologies for web-based education. Special issue on intelligent systems and teleteaching. Konstliche Intelligenz 4, 19–25 (1999)

    Google Scholar 

  6. Carpenter, S.K., Pashler, H., Wixted, J.T., Vul, E.: The effects of tests on learning and forgetting. Memory Cogn. 36, 438–448 (2008). https://doi.org/10.3758/MC.36.2.438

    Article  Google Scholar 

  7. Chen, J., Dosyn, D., Lytvyn, V., Sachenko, A.: Smart data integration by goal driven ontology learning. Adv. Big Data 529, 283–289 (2016). https://doi.org/10.1007/978-3-319-47898-2_29

    Article  Google Scholar 

  8. Cho, K.W., Neely, L.H., Crocco, S., Virando, D.: Testing enhances both encoding and retrieval for both tested and untested items. Q. J. Exp. Psychol. 70(7), 1211–1235 (2017). https://doi.org/10.1080/17470218.2016.1175485

    Article  Google Scholar 

  9. Durlach, P.J., Lesgold, A.M.: Adaptive Technologies for Training and Education. Cambridge University Press, New York (2012)

    Book  Google Scholar 

  10. Gierl, M.J., Lai, H., Hogan, L.B., Matovinovic, D.: A method for generation educational test items that are aligned to the common core state standards. J. Appl. Test. Technol. 16(1), 1–18 (2015)

    Google Scholar 

  11. Gutl, C., Lankmayr, K., Weinhofer, J., Hofler, M.: Enhanced approach of automatic creation of test items to foster modern learning setting. Electron. J. e-Learn. 9, 23–38 (2011)

    Google Scholar 

  12. Hu, X., Pedrycz, W., Castillo, O., Melin, P.: Fuzzy rule-based models with interactive rules and their granular generalization. Fuzzy Sets Syst. 307, 1–28 (2017). https://doi.org/10.1016/j.fss.2016.03.005

    Article  MathSciNet  Google Scholar 

  13. Istiyono, E., Dwandaru, W.S.B., Setiawan, R., Megawati, I.: Developing of computerized adaptive testing to measure physics higher order thinking skills of senior high school students and its feasibility of use. Eur. J. Educ. Res. 9(1), 91–101 (2020). https://doi.org/10.12973/eu-jer.9.1.91

  14. Kehrer, T., Alshanqiti, A., Heckel, R.: Automatic inference of rule-based specifications of complex in-place model transformations. In: Guerra, E., van den Brand, M. (eds.) ICMT 2017. LNCS, vol. 10374, pp. 92–107. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61473-1_7

    Chapter  Google Scholar 

  15. Krak, Y., Barmak, O., Mazurets, O.: The practice investigation of the information technology efficiency for automated definition of terms in the semantic content of educational materials, vol. 1631, pp. 237–245. CEUR Workshop Proceedings (2016)

    Google Scholar 

  16. Krak, Y., Barmak, O., Mazurets, O.: The practice implementation of the information technology for automated definition of semantic terms sets in the content of educational materials, vol. 2139, pp. 245–254. CEUR Workshop Proceedings (2018)

    Google Scholar 

  17. Kryvonos, I.G., Krak, I.V., Barmak, O.V., Bagriy, R.O.: New tools of alternative communication for persons with verbal communication disorders. Cybern. Syst. Anal. 52(5), 665–673 (2016). https://doi.org/10.1007/s10559-016-9869-3

    Article  Google Scholar 

  18. Liu, H., Gegov, A., Cocea, M.: Rule-based systems: a granular computing perspective. Granular Comput. 1(4), 259–274 (2016). https://doi.org/10.1007/s41066-016-0021-6

    Article  Google Scholar 

  19. Manziuk, E.A., Barmak, O.V., Krak, I.V., Kasianiuk, V.S.: Definition of information core for documents classification. J. Autom. Inf. Sci. 50(4), 25–34 (2018). https://doi.org/10.1615/JAutomatInfScien.v50.i4.30

    Article  Google Scholar 

  20. Moghimi, M., Varjani, A.: New rule-based phishing detection method. Expert Syst. Appl. 53, 231–242 (2016). https://doi.org/10.1016/j.eswa.2016.01.028

    Article  Google Scholar 

  21. Pasichnyk, R., Melnyk, A., Pasichnyk, N., Turchenko, I.: Method of adaptive control structure learning based on model of test’s complexity. In: Proceedings of the 6th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications, IDAACS 2011, vol. 2, pp. 692–695. Prague, Czech Republic (2011). https://doi.org/10.1109/IDAACS.2011.6072858

  22. Saed, M.R.: Methods and Applications for Advancing Distance Education Technologies: International Issue and Solutions. IGI Global (2009)

    Google Scholar 

  23. Sorrel, M.A., Abad, F., Nájera, P.: Improving accuracy and usage by correctly selecting: the effects of model selection in cognitive diagnosis computerized adaptive testing. Appl. Psychol. Measure. 45(2), 112–129 (2021). https://doi.org/10.1177/0146621620977682

    Article  Google Scholar 

  24. Yang, C., Potts, R., Shanks, D.R.: Enhancing learning and retrieval of new information: a review of the forward testing effect. Sci. Learn. 3, 8 (2018). https://doi.org/10.1038/s41539-018-0024-y

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mazurets, O., Barmak, O., Krak, I., Manziuk, E., Bahrii, R. (2022). Method for Adaptive Semantic Testing of Educational Materials Level of Knowledge. In: Babichev, S., Lytvynenko, V. (eds) Lecture Notes in Computational Intelligence and Decision Making. ISDMCI 2021. Lecture Notes on Data Engineering and Communications Technologies, vol 77. Springer, Cham. https://doi.org/10.1007/978-3-030-82014-5_33

Download citation

Publish with us

Policies and ethics