Abstract
In recent years, the advent of deep neural networks opened new perspectives for security evaluations with side-channel analysis. Profiling attacks now benefit from capabilities offered by convolutional neural networks, such as dimensionality reduction and the inherent ability to reduce the trace desynchronization effects. These neural networks contain at least three types of layers: convolutional, pooling, and dense layers. Although the definition of pooling layers causes a large impact on neural network performance, a study on pooling hyperparameters effect on side-channel analysis is still not provided in the academic community. This paper provides extensive experimental results to demonstrate how pooling layer types and pooling stride and size affect the profiling attack performance with convolutional neural networks. Additionally, we demonstrate that pooling hyperparameters can be larger than usually used in related works and still keep good performance for profiling attacks on specific datasets.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Benadjila, R., Prouff, E., Strullu, R., Cagli, E., Dumas, C.: Deep learning for side-channel analysis and introduction to ASCAD database. J. Cryptograph. Eng. 10(2), 163–188 (2020). https://doi.org/10.1007/s13389-019-00220-8
Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28632-5_2
Cagli, E., Dumas, C., Prouff, E.: Convolutional neural networks with data augmentation against jitter-based countermeasures. In: Fischer, W., Homma, N. (eds.) CHES 2017. LNCS, vol. 10529, pp. 45–68. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66787-4_3
Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski, B.S., Koç, K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36400-5_3
Gierlichs, B., Batina, L., Tuyls, P., Preneel, B.: Mutual information analysis. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 426–442. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85053-3_27
Gilmore, R., Hanley, N., O’Neill, M.: Neural network based attack on a masked implementation of AES. In: 2015 IEEE International Symposium on Hardware Oriented Security and Trust (HOST), pp. 106–111. IEEE (2015)
Heuser, A., Zohner, M.: Intelligent machine homicide. In: Schindler, W., Huss, S.A. (eds.) COSADE 2012. LNCS, vol. 7275, pp. 249–264. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29912-4_18
Kim, J., Picek, S., Heuser, A., Bhasin, S., Hanjalic, A.: Make some noise. unleashing the power of convolutional neural networks for profiled side-channel analysis. IACR Trans. Cryptograph. Hardware Embedded Syst., 148–179 (2019)
Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1_25
Lerman, L., Medeiros, S.F., Bontempi, G., Markowitch, O.: A machine learning approach against a masked AES. In: Francillon, A., Rohatgi, P. (eds.) CARDIS 2013. LNCS, vol. 8419, pp. 61–75. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08302-5_5
Lerman, L., Poussier, R., Bontempi, G., Markowitch, O., Standaert, F.-X.: Template attacks vs. machine learning revisited (and the curse of dimensionality in side-channel analysis). In: Mangard, S., Poschmann, A.Y. (eds.) COSADE 2014. LNCS, vol. 9064, pp. 20–33. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21476-4_2
Li, H., Krček, M., Perin, G.: A comparison of weight initializers in deep learning-based side-channel analysis. In: Zhou, J., et al. (eds.) ACNS 2020. LNCS, vol. 12418, pp. 126–143. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-61638-0_8
Maghrebi, H., Portigliatti, T., Prouff, E.: Breaking cryptographic implementations using deep learning techniques. In: Carlet, C., Hasan, M.A., Saraswat, V. (eds.) SPACE 2016. LNCS, vol. 10076, pp. 3–26. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49445-6_1
Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks. Springer, Boston (2007). https://doi.org/10.1007/978-0-387-38162-6
O’Flynn, C., Chen, Z.D.: ChipWhisperer: an open-source platform for hardware embedded security research. In: Prouff, E. (ed.) COSADE 2014. LNCS, vol. 8622, pp. 243–260. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10175-0_17
Perin, G., Picek, S.: On the influence of optimizers in deep learning-based side-channel analysis. IACR Cryptology ePrint Archive 2020, 977 (2020). https://eprint.iacr.org/2020/977
Picek, S., Heuser, A., Jovic, A., Bhasin, S., Regazzoni, F.: The curse of class imbalance and conflicting metrics with machine learning for side-channel evaluations. IACR Trans. Cryptograph. Hardware Embedded Syst. 2019(1), 209–237 (2018). https://doi.org/10.13154/tches.v2019.i1.209-237. https://tches.iacr.org/index.php/TCHES/article/view/7339
Picek, S., Heuser, A., Jovic, A., Bhasin, S., Regazzoni, F.: The curse of class imbalance and conflicting metrics with machine learning for side-channel evaluations. IACR Trans. Cryptograph. Hardware Embedded Syst. 2019(1), 1–29 (2019)
Picek, S., Samiotis, I.P., Kim, J., Heuser, A., Bhasin, S., Legay, A.: On the performance of convolutional neural networks for side-channel analysis. In: Chattopadhyay, A., Rebeiro, C., Yarom, Y. (eds.) SPACE 2018. LNCS, vol. 11348, pp. 157–176. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-05072-6_10
Quisquater, J.-J., Samyde, D.: ElectroMagnetic analysis (EMA): measures and counter-measures for smart cards. In: Attali, I., Jensen, T. (eds.) E-smart 2001. LNCS, vol. 2140, pp. 200–210. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45418-7_17
Rijsdijk, J., Wu, L., Perin, G., Picek, S.: Reinforcement learning for hyperparameter tuning in deep learning-based side-channel analysis. Technical report, Cryptology ePrint Archive, Report 2021/071 (2021). https://eprint.iacr.org
Rijsdijk, J., Wu, L., Perin, G., Picek, S.: Reinforcement learning for hyperparameter tuning in deep learning-based side-channel analysis. Cryptology ePrint Archive, Report 2021/071 (2021). https://eprint.iacr.org/2021/071
Standaert, F.-X., Malkin, T.G., Yung, M.: A unified framework for the analysis of side-channel key recovery attacks. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 443–461. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01001-9_26
Tran, N.Q., Nguyen, H.Q.: Efficient CNN-based profiled side channel attacks. J. Comput. Sci. Cybern. 37(1), 1–22 (2021)
Wouters, L., Arribas, V., Gierlichs, B., Preneel, B.: Revisiting a methodology for efficient CNN architectures in profiling attacks. IACR Trans. Cryptograph. Hardware Embedded Syst. 2020(3), 147–168 (2020). https://doi.org/10.13154/tches.v2020.i3.147-168. https://tches.iacr.org/index.php/TCHES/article/view/8586
Wu, L., Perin, G., Picek, S.: I choose you: Automated hyperparameter tuning for deep learning-based side-channel analysis. Cryptology ePrint Archive, Report 2020/1293 (2020). https://eprint.iacr.org/2020/1293
Zaid, G., Bossuet, L., Habrard, A., Venelli, A.: Methodology for efficient CNN architectures in profiling attacks. IACR Trans. Cryptograph. Hardware Embedded Syst. 2020(1), 1–36 (2019). https://doi.org/10.13154/tches.v2020.i1.1-36. https://tches.iacr.org/index.php/TCHES/article/view/8391
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Wu, L., Perin, G. (2021). On the Importance of Pooling Layer Tuning for Profiling Side-Channel Analysis. In: Zhou, J., et al. Applied Cryptography and Network Security Workshops. ACNS 2021. Lecture Notes in Computer Science(), vol 12809. Springer, Cham. https://doi.org/10.1007/978-3-030-81645-2_8
Download citation
DOI: https://doi.org/10.1007/978-3-030-81645-2_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-81644-5
Online ISBN: 978-3-030-81645-2
eBook Packages: Computer ScienceComputer Science (R0)