Nothing Special   »   [go: up one dir, main page]

Skip to main content

On the Importance of Pooling Layer Tuning for Profiling Side-Channel Analysis

  • Conference paper
  • First Online:
Applied Cryptography and Network Security Workshops (ACNS 2021)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 12809))

Included in the following conference series:

Abstract

In recent years, the advent of deep neural networks opened new perspectives for security evaluations with side-channel analysis. Profiling attacks now benefit from capabilities offered by convolutional neural networks, such as dimensionality reduction and the inherent ability to reduce the trace desynchronization effects. These neural networks contain at least three types of layers: convolutional, pooling, and dense layers. Although the definition of pooling layers causes a large impact on neural network performance, a study on pooling hyperparameters effect on side-channel analysis is still not provided in the academic community. This paper provides extensive experimental results to demonstrate how pooling layer types and pooling stride and size affect the profiling attack performance with convolutional neural networks. Additionally, we demonstrate that pooling hyperparameters can be larger than usually used in related works and still keep good performance for profiling attacks on specific datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Benadjila, R., Prouff, E., Strullu, R., Cagli, E., Dumas, C.: Deep learning for side-channel analysis and introduction to ASCAD database. J. Cryptograph. Eng. 10(2), 163–188 (2020). https://doi.org/10.1007/s13389-019-00220-8

  2. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28632-5_2

    Chapter  Google Scholar 

  3. Cagli, E., Dumas, C., Prouff, E.: Convolutional neural networks with data augmentation against jitter-based countermeasures. In: Fischer, W., Homma, N. (eds.) CHES 2017. LNCS, vol. 10529, pp. 45–68. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66787-4_3

    Chapter  Google Scholar 

  4. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski, B.S., Koç, K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36400-5_3

    Chapter  Google Scholar 

  5. Gierlichs, B., Batina, L., Tuyls, P., Preneel, B.: Mutual information analysis. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 426–442. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85053-3_27

    Chapter  Google Scholar 

  6. Gilmore, R., Hanley, N., O’Neill, M.: Neural network based attack on a masked implementation of AES. In: 2015 IEEE International Symposium on Hardware Oriented Security and Trust (HOST), pp. 106–111. IEEE (2015)

    Google Scholar 

  7. Heuser, A., Zohner, M.: Intelligent machine homicide. In: Schindler, W., Huss, S.A. (eds.) COSADE 2012. LNCS, vol. 7275, pp. 249–264. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29912-4_18

    Chapter  Google Scholar 

  8. Kim, J., Picek, S., Heuser, A., Bhasin, S., Hanjalic, A.: Make some noise. unleashing the power of convolutional neural networks for profiled side-channel analysis. IACR Trans. Cryptograph. Hardware Embedded Syst., 148–179 (2019)

    Google Scholar 

  9. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1_25

    Chapter  Google Scholar 

  10. Lerman, L., Medeiros, S.F., Bontempi, G., Markowitch, O.: A machine learning approach against a masked AES. In: Francillon, A., Rohatgi, P. (eds.) CARDIS 2013. LNCS, vol. 8419, pp. 61–75. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08302-5_5

    Chapter  Google Scholar 

  11. Lerman, L., Poussier, R., Bontempi, G., Markowitch, O., Standaert, F.-X.: Template attacks vs. machine learning revisited (and the curse of dimensionality in side-channel analysis). In: Mangard, S., Poschmann, A.Y. (eds.) COSADE 2014. LNCS, vol. 9064, pp. 20–33. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21476-4_2

    Chapter  Google Scholar 

  12. Li, H., Krček, M., Perin, G.: A comparison of weight initializers in deep learning-based side-channel analysis. In: Zhou, J., et al. (eds.) ACNS 2020. LNCS, vol. 12418, pp. 126–143. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-61638-0_8

    Chapter  Google Scholar 

  13. Maghrebi, H., Portigliatti, T., Prouff, E.: Breaking cryptographic implementations using deep learning techniques. In: Carlet, C., Hasan, M.A., Saraswat, V. (eds.) SPACE 2016. LNCS, vol. 10076, pp. 3–26. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49445-6_1

    Chapter  Google Scholar 

  14. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks. Springer, Boston (2007). https://doi.org/10.1007/978-0-387-38162-6

    Book  MATH  Google Scholar 

  15. O’Flynn, C., Chen, Z.D.: ChipWhisperer: an open-source platform for hardware embedded security research. In: Prouff, E. (ed.) COSADE 2014. LNCS, vol. 8622, pp. 243–260. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10175-0_17

    Chapter  Google Scholar 

  16. Perin, G., Picek, S.: On the influence of optimizers in deep learning-based side-channel analysis. IACR Cryptology ePrint Archive 2020, 977 (2020). https://eprint.iacr.org/2020/977

  17. Picek, S., Heuser, A., Jovic, A., Bhasin, S., Regazzoni, F.: The curse of class imbalance and conflicting metrics with machine learning for side-channel evaluations. IACR Trans. Cryptograph. Hardware Embedded Syst. 2019(1), 209–237 (2018). https://doi.org/10.13154/tches.v2019.i1.209-237. https://tches.iacr.org/index.php/TCHES/article/view/7339

  18. Picek, S., Heuser, A., Jovic, A., Bhasin, S., Regazzoni, F.: The curse of class imbalance and conflicting metrics with machine learning for side-channel evaluations. IACR Trans. Cryptograph. Hardware Embedded Syst. 2019(1), 1–29 (2019)

    Google Scholar 

  19. Picek, S., Samiotis, I.P., Kim, J., Heuser, A., Bhasin, S., Legay, A.: On the performance of convolutional neural networks for side-channel analysis. In: Chattopadhyay, A., Rebeiro, C., Yarom, Y. (eds.) SPACE 2018. LNCS, vol. 11348, pp. 157–176. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-05072-6_10

    Chapter  Google Scholar 

  20. Quisquater, J.-J., Samyde, D.: ElectroMagnetic analysis (EMA): measures and counter-measures for smart cards. In: Attali, I., Jensen, T. (eds.) E-smart 2001. LNCS, vol. 2140, pp. 200–210. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45418-7_17

    Chapter  MATH  Google Scholar 

  21. Rijsdijk, J., Wu, L., Perin, G., Picek, S.: Reinforcement learning for hyperparameter tuning in deep learning-based side-channel analysis. Technical report, Cryptology ePrint Archive, Report 2021/071 (2021). https://eprint.iacr.org

  22. Rijsdijk, J., Wu, L., Perin, G., Picek, S.: Reinforcement learning for hyperparameter tuning in deep learning-based side-channel analysis. Cryptology ePrint Archive, Report 2021/071 (2021). https://eprint.iacr.org/2021/071

  23. Standaert, F.-X., Malkin, T.G., Yung, M.: A unified framework for the analysis of side-channel key recovery attacks. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 443–461. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01001-9_26

    Chapter  Google Scholar 

  24. Tran, N.Q., Nguyen, H.Q.: Efficient CNN-based profiled side channel attacks. J. Comput. Sci. Cybern. 37(1), 1–22 (2021)

    Article  MathSciNet  Google Scholar 

  25. Wouters, L., Arribas, V., Gierlichs, B., Preneel, B.: Revisiting a methodology for efficient CNN architectures in profiling attacks. IACR Trans. Cryptograph. Hardware Embedded Syst. 2020(3), 147–168 (2020). https://doi.org/10.13154/tches.v2020.i3.147-168. https://tches.iacr.org/index.php/TCHES/article/view/8586

  26. Wu, L., Perin, G., Picek, S.: I choose you: Automated hyperparameter tuning for deep learning-based side-channel analysis. Cryptology ePrint Archive, Report 2020/1293 (2020). https://eprint.iacr.org/2020/1293

  27. Zaid, G., Bossuet, L., Habrard, A., Venelli, A.: Methodology for efficient CNN architectures in profiling attacks. IACR Trans. Cryptograph. Hardware Embedded Syst. 2020(1), 1–36 (2019). https://doi.org/10.13154/tches.v2020.i1.1-36. https://tches.iacr.org/index.php/TCHES/article/view/8391

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wu, L., Perin, G. (2021). On the Importance of Pooling Layer Tuning for Profiling Side-Channel Analysis. In: Zhou, J., et al. Applied Cryptography and Network Security Workshops. ACNS 2021. Lecture Notes in Computer Science(), vol 12809. Springer, Cham. https://doi.org/10.1007/978-3-030-81645-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-81645-2_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-81644-5

  • Online ISBN: 978-3-030-81645-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics