Nothing Special   »   [go: up one dir, main page]

Skip to main content

Stair-Step Feature Pyramid Networks for Object Detection

  • Conference paper
  • First Online:
Frontiers of Computer Vision (IW-FCV 2021)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1405))

Included in the following conference series:

Abstract

Feature Pyramid Networks have solved scale variation problems in object detection by developing multi-level features with different scales from backbone networks. Although this network achieved promising performance without affecting model complexity, they still suffer feature-level imbalance between multi-level features, i.e., low-level features and high-level features in each stage of the backbone. Moreover, the detection head predicts classification scores and offset regression independently on each feature of multi-level features, which leads to inconsistency among the detection branch. Hence, this paper releases this problem by introducing simple but effective Stair-step Feature Pyramid Networks (SFPN) to harmonize information between multi-level features. Further, the Offset Adaption Module (OA Module) is proposed to improve feature representation by adapting the feature of the classification branch with regressed offsets of the regression branch. On the MS-COCO dataset, the proposed method increases by 1.2% Average Precision when comparing with baseline FCOS without bells and whistles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cao, Y., Xu, J., Lin, S., Wei, F., Hu, H.: GCNet: non-local networks meet squeeze-excitation networks and beyond. In: Proceedings of the IEEE International Conference on Computer Vision Workshops (2019)

    Google Scholar 

  2. Chen, K., et al.: MMDetection: open MMLab detection toolbox and benchmark. arXiv preprint arXiv:1906.07155 (2019)

  3. Dai, J., et al.: Deformable convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 764–773 (2017)

    Google Scholar 

  4. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961–2969 (2017)

    Google Scholar 

  5. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  6. Kong, T., Sun, F., Liu, H., Jiang, Y., Li, L., Shi, J.: FoveaBox: beyound anchor-based object detection. IEEE Trans. Image Process. 29, 7389–7398 (2020)

    Article  Google Scholar 

  7. Li, B., Liu, Y., Wang, X.: Gradient harmonized single-stage detector. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 8577–8584 (2019)

    Google Scholar 

  8. Li, Y., Chen, Y., Wang, N., Zhang, Z.: Scale-aware trident networks for object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 6054–6063 (2019)

    Google Scholar 

  9. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017)

    Google Scholar 

  10. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2980–2988 (2017)

    Google Scholar 

  11. Lin, T.Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  12. Pang, J., Chen, K., Shi, J., Feng, H., Ouyang, W., Lin, D.: Libra R-CNN: towards balanced learning for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 821–830 (2019)

    Google Scholar 

  13. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, pp. 91–99 (2015)

    Google Scholar 

  14. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vision 115(3), 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  15. Tian, Z., Shen, C., Chen, H., He, T.: Fcos: a simple and strong anchor-free object detector. IEEE Trans. Pattern Anal. Mach. Intell. (2020)

    Google Scholar 

  16. Vo, X.T., Jo, K.H.: Enhanced feature pyramid networks by feature aggregation module and refinement module. In: 2020 13th International Conference on Human System Interaction (HSI), pp. 63–67. IEEE (2020)

    Google Scholar 

  17. Vo, X.T., Wen, L., Tran, T.D., Jo, K.H.: Bidirectional non-local networks for object detection. In: International Conference on Computational Collective Intelligence, pp. 491–501. Springer (2020)

    Google Scholar 

  18. Wang, X., Girshick, R., Gupta, A., He, K.: Non-local neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7794–7803 (2018)

    Google Scholar 

  19. Zhang, X., Wan, F., Liu, C., Ji, R., Ye, Q.: FreeAnchor: learning to match anchors for visual object detection. In: Advances in Neural Information Processing Systems, pp. 147–155 (2019)

    Google Scholar 

Download references

Acknowledgment

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the government (MSIT) (No. 2020R1A2C2008972).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kang-Hyun Jo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vo, XT., Tran, TD., Nguyen, DL., Jo, KH. (2021). Stair-Step Feature Pyramid Networks for Object Detection. In: Jeong, H., Sumi, K. (eds) Frontiers of Computer Vision. IW-FCV 2021. Communications in Computer and Information Science, vol 1405. Springer, Cham. https://doi.org/10.1007/978-3-030-81638-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-81638-4_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-81637-7

  • Online ISBN: 978-3-030-81638-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics