Abstract
Feature Pyramid Networks have solved scale variation problems in object detection by developing multi-level features with different scales from backbone networks. Although this network achieved promising performance without affecting model complexity, they still suffer feature-level imbalance between multi-level features, i.e., low-level features and high-level features in each stage of the backbone. Moreover, the detection head predicts classification scores and offset regression independently on each feature of multi-level features, which leads to inconsistency among the detection branch. Hence, this paper releases this problem by introducing simple but effective Stair-step Feature Pyramid Networks (SFPN) to harmonize information between multi-level features. Further, the Offset Adaption Module (OA Module) is proposed to improve feature representation by adapting the feature of the classification branch with regressed offsets of the regression branch. On the MS-COCO dataset, the proposed method increases by 1.2% Average Precision when comparing with baseline FCOS without bells and whistles.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Cao, Y., Xu, J., Lin, S., Wei, F., Hu, H.: GCNet: non-local networks meet squeeze-excitation networks and beyond. In: Proceedings of the IEEE International Conference on Computer Vision Workshops (2019)
Chen, K., et al.: MMDetection: open MMLab detection toolbox and benchmark. arXiv preprint arXiv:1906.07155 (2019)
Dai, J., et al.: Deformable convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 764–773 (2017)
He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961–2969 (2017)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
Kong, T., Sun, F., Liu, H., Jiang, Y., Li, L., Shi, J.: FoveaBox: beyound anchor-based object detection. IEEE Trans. Image Process. 29, 7389–7398 (2020)
Li, B., Liu, Y., Wang, X.: Gradient harmonized single-stage detector. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 8577–8584 (2019)
Li, Y., Chen, Y., Wang, N., Zhang, Z.: Scale-aware trident networks for object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 6054–6063 (2019)
Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017)
Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2980–2988 (2017)
Lin, T.Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48
Pang, J., Chen, K., Shi, J., Feng, H., Ouyang, W., Lin, D.: Libra R-CNN: towards balanced learning for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 821–830 (2019)
Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, pp. 91–99 (2015)
Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vision 115(3), 211–252 (2015)
Tian, Z., Shen, C., Chen, H., He, T.: Fcos: a simple and strong anchor-free object detector. IEEE Trans. Pattern Anal. Mach. Intell. (2020)
Vo, X.T., Jo, K.H.: Enhanced feature pyramid networks by feature aggregation module and refinement module. In: 2020 13th International Conference on Human System Interaction (HSI), pp. 63–67. IEEE (2020)
Vo, X.T., Wen, L., Tran, T.D., Jo, K.H.: Bidirectional non-local networks for object detection. In: International Conference on Computational Collective Intelligence, pp. 491–501. Springer (2020)
Wang, X., Girshick, R., Gupta, A., He, K.: Non-local neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7794–7803 (2018)
Zhang, X., Wan, F., Liu, C., Ji, R., Ye, Q.: FreeAnchor: learning to match anchors for visual object detection. In: Advances in Neural Information Processing Systems, pp. 147–155 (2019)
Acknowledgment
This work was supported by the National Research Foundation of Korea (NRF) grant funded by the government (MSIT) (No. 2020R1A2C2008972).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Vo, XT., Tran, TD., Nguyen, DL., Jo, KH. (2021). Stair-Step Feature Pyramid Networks for Object Detection. In: Jeong, H., Sumi, K. (eds) Frontiers of Computer Vision. IW-FCV 2021. Communications in Computer and Information Science, vol 1405. Springer, Cham. https://doi.org/10.1007/978-3-030-81638-4_13
Download citation
DOI: https://doi.org/10.1007/978-3-030-81638-4_13
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-81637-7
Online ISBN: 978-3-030-81638-4
eBook Packages: Computer ScienceComputer Science (R0)