Nothing Special   »   [go: up one dir, main page]

Skip to main content

Learning Logical Reasoning : Improving the Student Model with a Data Driven Approach

  • Conference paper
  • First Online:
Intelligent Tutoring Systems (ITS 2021)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 12677))

Included in the following conference series:

Abstract

In our previous works, we presented Logic-Muse as an Intelligent Tutoring System that helps learners improve logical reasoning skills in multiple contexts. Logic-Muse components were validated and argued by experts throughout the designing process (ITS researchers, logicians and reasoning psychologists). A Bayesian network with expert validation has been developed and used in a Bayesian Knowledge Tracing (BKT) process that allows the inference of the learner’s behaviour. This paper presents an evaluation of the learner components of Logic-Muse. We conducted a study and collected data from nearly 300 students who processed 48 reasoning activities. This data was used in the development a psychometric model, a key element for initializing the learner’s model and for validating and improve the structure of the initial Bayesian network built with experts.

NSERC Discovery Grant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Baker, R.S.J., Corbett, A.T., Aleven, V.: More accurate student modeling through contextual estimation of slip and guess probabilities in bayesian knowledge tracing. In: Woolf, B.P., Aïmeur, E., Nkambou, R., Lajoie, S. (eds.) ITS 2008. LNCS, vol. 5091, pp. 406–415. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-69132-7_44

    Chapter  Google Scholar 

  2. Beck, J.E., Chang, K.: Identifiability: a fundamental problem of student modeling. In: Conati, C., McCoy, K., Paliouras, G. (eds.) UM 2007. LNCS (LNAI), vol. 4511, pp. 137–146. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73078-1_17

    Chapter  Google Scholar 

  3. Chen, J., de la Torre, J., Zhang, Z.: Relative and absolute fit evaluation in cognitive diagnosis modeling. J. Educ. Meas. 50(2), 123–140 (2013)

    Article  Google Scholar 

  4. Conati, C., Gertner, A., Vanlehn, K.: Using bayesian networks to manage uncertainty in student modeling. User Model. User-Adapt. Interact. 12(4), 371–417 (2002)

    Article  Google Scholar 

  5. Corbett, A.T., Anderson, J.R.: Knowledge tracing: modeling the acquisition of procedural knowledge. User Model. User-Adapt. Interact. 4(4), 253–278 (1994)

    Article  Google Scholar 

  6. Cummins, D.D., Lubart, T., Alksnis, O., Rist, R.: Conditional reasoning and causation. Memory Cogn 19(3), 274–282 (1991)

    Article  Google Scholar 

  7. De La Torre, J.: A cognitive diagnosis model for cognitively based multiple-choice options. Appl. Psychol. Meas. 33(3), 163–183 (2009)

    Article  MathSciNet  Google Scholar 

  8. De Neys, W., Schaeken, W., D’Ydewalle, G.: Inference suppression and semantic memory retrieval: every counterexample counts. Memory Cogn. 31(4), 581–595 (2003)

    Article  Google Scholar 

  9. Gilovich, T., Griffin, D., Kahneman, D.: Heuristics and Biases: The Psychology of Intuitive Judgment. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  10. Groß, J., Robitzsch, A., George, A.: Cognitive diagnosis models for baseline testing of educational standards in math. J. Appl. Stat. 43(1), 229–243 (2016)

    Article  MathSciNet  Google Scholar 

  11. Guilford, J.P., Lyons, T.C.: On determining the reliability and significance of a tetrachoric coefficient of correlation. Psychometrika 7(4), 243–249 (1942)

    Article  MathSciNet  Google Scholar 

  12. Kasurinen, J., Nikula, U.: Estimating programming knowledge with bayesian knowledge tracing. In: ACM SIGCSE Bulletin, vol. 41, pp. 313–317. ACM (2009)

    Google Scholar 

  13. Markovits, H.: The development of abstract conditional reasoning. In: The Development of Thinking and Reasoning, pp. 83–104. Psychology Press (2013)

    Google Scholar 

  14. Markovits, H., Vachon, R.: Reasoning with contrary-to-fact propositions. J. Exp. Child Psychol. 47(3), 398–412 (1989)

    Article  Google Scholar 

  15. Nkambou, R., Mizoguchi, R., Bourdeau, J.: Advances in Intelligent Tutoring Systems, vol. 308. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14363-2

    Book  MATH  Google Scholar 

  16. Tato, A., Nkambou, R., Brisson, J., Robert, S.: Predicting learner’s deductive reasoning skills using a bayesian network. In: André, E., Baker, R., Hu, X., Rodrigo, M.M.T., du Boulay, B. (eds.) AIED 2017. LNCS (LNAI), vol. 10331, pp. 381–392. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61425-0_32

    Chapter  Google Scholar 

  17. Thompson, V.A.: Interpretational factors in conditional reasoning. Memory Cogn. 22(6), 742–758 (1994)

    Article  Google Scholar 

  18. Yudelson, M.V., Koedinger, K.R., Gordon, G.J.: Individualized bayesian knowledge tracing models. In: Lane, H.C., Yacef, K., Mostow, J., Pavlik, P. (eds.) AIED 2013. LNCS (LNAI), vol. 7926, pp. 171–180. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39112-5_18

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nkambou, R., Brisson, J., Robert, S., Tato, A. (2021). Learning Logical Reasoning : Improving the Student Model with a Data Driven Approach. In: Cristea, A.I., Troussas, C. (eds) Intelligent Tutoring Systems. ITS 2021. Lecture Notes in Computer Science(), vol 12677. Springer, Cham. https://doi.org/10.1007/978-3-030-80421-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-80421-3_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-80420-6

  • Online ISBN: 978-3-030-80421-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics