Nothing Special   »   [go: up one dir, main page]

Skip to main content

Towards Digital Twins Driven Breast Cancer Detection

  • Conference paper
  • First Online:
Intelligent Computing

Abstract

Digital twins have transformed the industrial world by changing the development phase of a product or the use of equipment. With the digital twin, the object’s evolution data allows us to anticipate and optimize its performance. Healthcare is in the midst of a digital transition towards personalized, predictive, preventive, and participatory medicine. The digital twin is one of the key tools of this change. In this work, DT is proposed for the diagnosis of breast cancer based on breast skin temperature. Research has focused on thermography as a non-invasive scanning solution for breast cancer diagnosis. However, body temperature is influenced by many factors, such as breast anatomy, physiological functions, blood pressure, etc. The proposed DT updates the bio-heat model’s temperature using the data collected by temperature sensors and complementary data from smart devices. Consequently, the proposed DT is personalized using the collected data to reflect the person’s behavior with whom it is connected.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Agnelli, J.P., Barrea, A.A., Turner, C.V.: Tumor location and parameter estimation by thermography. Math. Comput. Model. 53(7–8), 1527–1534 (2011)

    Article  Google Scholar 

  2. Angulo, C., Gonzalez-Abril, L., Raya, C., Ortega, J.A.: A proposal to evolving towards digital twins in healthcare. In: Rojas, I., Valenzuela, O., Rojas, F., Herrera, L., Ortuño, F. (eds.) International Work-Conference on Bioinformatics and Biomedical Engineering. IWBBIO 2020. Lecture Notes in Computer Science, vol. 12108, pp. 418–426. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45385-5_37

    Chapter  Google Scholar 

  3. Bagaria, N., Laamarti, F., Badawi, H.F., Albraikan, A., Martinez Velazquez, R., El Saddik, A.: Health 4.0: digital twins for health and well-being. In: El Saddik, A., Hossain, M., Kantarci, B. (eds.) Connected Health in Smart Cities, pp. 143–152. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-27844-1_7

  4. Benayache, A., Bilami, A., Barkat, S., Lorenz, P., Taleb, H.: MsM: a microservice middleware for smart WSN-based IoT application. J. Netw. Comput. Appl. 144, 138–154 (2019). https://doi.org/10.1016/j.jnca.2019.06.015

    Article  Google Scholar 

  5. Bruynseels, K., de Sio, F.S., van den Hoven, J.: Digital twins in health care: ethical implications of an emerging engineering paradigm. Front. Genet. 9, 31 (2018)

    Article  Google Scholar 

  6. Byrns, G.E., et al.: Chemical hazards in radiology. Appl. Occup. Environ. Hyg. 15(2), 203–208 (2000)

    Article  MathSciNet  Google Scholar 

  7. Charkoudian, N., Stachenfeld, N.S.: Reproductive hormone influences on thermoregulation in women. Compr. Physiol. 4(2), 793–804 (2011)

    Google Scholar 

  8. Croatti, A., Gabellini, M., Montagna, S., Ricci, A.: On the integration of agents and digital twins in healthcare. J. Med. Syst. 44(9), 1–8 (2020)

    Article  Google Scholar 

  9. Azevedo Figueiredo, A.A., Fernandes, H.C., Guimaraes, G.: Experimental approach for breast cancer center estimation using infrared thermography. Infrared Phys. Technol. 95, 100–112 (2018)

    Article  Google Scholar 

  10. Gonzalez-Hernandez, J.-L., Recinella, A.N., Kandlikar, S.G., Dabydeen, D., Medeiros, L., Phatak, P.: Technology, application and potential of dynamic breast thermography for the detection of breast cancer. Int. J. Heat Mass Trans. 131, 558–573 (2019)

    Article  Google Scholar 

  11. Greaney, J.L., Kenney, W.L., Alexander, L.M.: Sympathetic regulation during thermal stress in human aging and disease. Auton. Neurosci. 196, 81–90 (2016)

    Article  Google Scholar 

  12. Gros, C., Gautherie, M., Bourjat, P.: Prognosis and post-therapeutic follow-up of breast cancers by thermography. Bibl. Radiol. 6, 77–90 (1975)

    Google Scholar 

  13. Hadjiiski, L., et al.: Breast masses: computer-aided diagnosis with serial mammograms. Radiology 240(2), 343–356 (2006)

    Article  Google Scholar 

  14. Jarvis, S.S., et al.: Sympathetic activation during early pregnancy in humans. J. Physiol. 590(15), 3535–3543 (2012)

    Google Scholar 

  15. Jung, S.-J., Myllylä, R., Chung, W.-Y.: Wireless machine-to-machine healthcare solution using android mobile devices in global networks. IEEE Sens. J. 13(5), 1419–1424 (2012)

    Article  Google Scholar 

  16. Kandlikar, S.G., et al.: Infrared imaging technology for breast cancer detection-current status, protocols and new directions. Int. J. Heat Mass Trans. 108, 2303–2320 (2017)

    Article  Google Scholar 

  17. Kennedy, D.A., Lee, T., Seely, D.: A comparative review of thermography as a breast cancer screening technique. Integr. Cancer Ther. 8(1), 9–16 (2009)

    Article  Google Scholar 

  18. Lawson, R.N., Chughtai, M.S.: Breast cancer and body temperature. Can. Med. Assoc. J. 88(2), 68 (1963)

    Google Scholar 

  19. Ma, J., et al.: A portable breast cancer detection system based on smartphone with infrared camera. Vibroeng. PROCEDIA 26, 57–63 (2019)

    Article  Google Scholar 

  20. Meraghni, S., Terrissa, L.S., Yue, M., Ma, J., Jemei, S., Zerhouni, N.: A data-driven digital-twin prognostics method for proton exchange membrane fuel cell remaining useful life prediction. Int. J. Hydrogen Energy 46, 2555–2564 (2020)

    Article  Google Scholar 

  21. Miller, K.D., Fidler-Benaoudia, M., Keegan, T.H., Hipp, H.S., Jemal, A., Siegel, R.L.: Cancer statistics for adolescents and young adults, 2020. CA: A Can. J. Clin. 70(6), 443–459 (2020)

    Google Scholar 

  22. Pennes, H.H.: Analysis of tissue and arterial blood temperatures in the resting human forearm. J. Appl. Physiol. 1(2), 93–122 (1948)

    Article  Google Scholar 

  23. Tepper, M., Gannot, I.: Monitoring tumor state from thermal images in animal and human models. Med. Phys. 42(3), 1297–1306 (2015)

    Article  Google Scholar 

  24. Tepper, M., et al.: Thermographic investigation of tumor size, and its correlation to tumor relative temperature, in mice with transplantable solid breast carcinoma. J. Biomed. Opt. 18(11), 111410 (2013). https://doi.org/10.1117/1.JBO.18.11.111410

    Article  Google Scholar 

  25. Tuegel, E.J., Ingraffea, A.R., Eason, T.G., Spottswood, S.M.: Reengineering aircraft structural life prediction using a digital twin. Int. J. Aerosp. Eng. 2011, 154798 (2011)

    Google Scholar 

  26. Wahab, A.A., Salim, M.I.M., Ahamat, M.A., Manaf, N.A., Yunus, J., Lai, K.W.: Thermal distribution analysis of three-dimensional tumor-embedded breast models with different breast density compositions. Med. Biol. Eng. Comput. 54(9), 1363–1373 (2016)

    Article  Google Scholar 

  27. Zhou, Y., Herman, C.: Optimization of skin cooling by computational modeling for early thermographic detection of breast cancer. Int. J. Heat Mass Transf. 126, 864–876 (2018)

    Article  Google Scholar 

  28. Zuluaga-Gomez, J., Al Masry, Z., Benaggoune, K., Meraghni, S., Zerhouni, N.: A CNN-based methodology for breast cancer diagnosis using thermal images. Comput Methods Biomech. Biomed. Eng. Imag. Vis. 9(2), 1–15 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Safa Meraghni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Meraghni, S., Benaggoune, K., Al Masry, Z., Terrissa, L.S., Devalland, C., Zerhouni, N. (2021). Towards Digital Twins Driven Breast Cancer Detection. In: Arai, K. (eds) Intelligent Computing. Lecture Notes in Networks and Systems, vol 285. Springer, Cham. https://doi.org/10.1007/978-3-030-80129-8_7

Download citation

Publish with us

Policies and ethics