Abstract
Digital twins have transformed the industrial world by changing the development phase of a product or the use of equipment. With the digital twin, the object’s evolution data allows us to anticipate and optimize its performance. Healthcare is in the midst of a digital transition towards personalized, predictive, preventive, and participatory medicine. The digital twin is one of the key tools of this change. In this work, DT is proposed for the diagnosis of breast cancer based on breast skin temperature. Research has focused on thermography as a non-invasive scanning solution for breast cancer diagnosis. However, body temperature is influenced by many factors, such as breast anatomy, physiological functions, blood pressure, etc. The proposed DT updates the bio-heat model’s temperature using the data collected by temperature sensors and complementary data from smart devices. Consequently, the proposed DT is personalized using the collected data to reflect the person’s behavior with whom it is connected.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Agnelli, J.P., Barrea, A.A., Turner, C.V.: Tumor location and parameter estimation by thermography. Math. Comput. Model. 53(7–8), 1527–1534 (2011)
Angulo, C., Gonzalez-Abril, L., Raya, C., Ortega, J.A.: A proposal to evolving towards digital twins in healthcare. In: Rojas, I., Valenzuela, O., Rojas, F., Herrera, L., Ortuño, F. (eds.) International Work-Conference on Bioinformatics and Biomedical Engineering. IWBBIO 2020. Lecture Notes in Computer Science, vol. 12108, pp. 418–426. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45385-5_37
Bagaria, N., Laamarti, F., Badawi, H.F., Albraikan, A., Martinez Velazquez, R., El Saddik, A.: Health 4.0: digital twins for health and well-being. In: El Saddik, A., Hossain, M., Kantarci, B. (eds.) Connected Health in Smart Cities, pp. 143–152. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-27844-1_7
Benayache, A., Bilami, A., Barkat, S., Lorenz, P., Taleb, H.: MsM: a microservice middleware for smart WSN-based IoT application. J. Netw. Comput. Appl. 144, 138–154 (2019). https://doi.org/10.1016/j.jnca.2019.06.015
Bruynseels, K., de Sio, F.S., van den Hoven, J.: Digital twins in health care: ethical implications of an emerging engineering paradigm. Front. Genet. 9, 31 (2018)
Byrns, G.E., et al.: Chemical hazards in radiology. Appl. Occup. Environ. Hyg. 15(2), 203–208 (2000)
Charkoudian, N., Stachenfeld, N.S.: Reproductive hormone influences on thermoregulation in women. Compr. Physiol. 4(2), 793–804 (2011)
Croatti, A., Gabellini, M., Montagna, S., Ricci, A.: On the integration of agents and digital twins in healthcare. J. Med. Syst. 44(9), 1–8 (2020)
Azevedo Figueiredo, A.A., Fernandes, H.C., Guimaraes, G.: Experimental approach for breast cancer center estimation using infrared thermography. Infrared Phys. Technol. 95, 100–112 (2018)
Gonzalez-Hernandez, J.-L., Recinella, A.N., Kandlikar, S.G., Dabydeen, D., Medeiros, L., Phatak, P.: Technology, application and potential of dynamic breast thermography for the detection of breast cancer. Int. J. Heat Mass Trans. 131, 558–573 (2019)
Greaney, J.L., Kenney, W.L., Alexander, L.M.: Sympathetic regulation during thermal stress in human aging and disease. Auton. Neurosci. 196, 81–90 (2016)
Gros, C., Gautherie, M., Bourjat, P.: Prognosis and post-therapeutic follow-up of breast cancers by thermography. Bibl. Radiol. 6, 77–90 (1975)
Hadjiiski, L., et al.: Breast masses: computer-aided diagnosis with serial mammograms. Radiology 240(2), 343–356 (2006)
Jarvis, S.S., et al.: Sympathetic activation during early pregnancy in humans. J. Physiol. 590(15), 3535–3543 (2012)
Jung, S.-J., Myllylä, R., Chung, W.-Y.: Wireless machine-to-machine healthcare solution using android mobile devices in global networks. IEEE Sens. J. 13(5), 1419–1424 (2012)
Kandlikar, S.G., et al.: Infrared imaging technology for breast cancer detection-current status, protocols and new directions. Int. J. Heat Mass Trans. 108, 2303–2320 (2017)
Kennedy, D.A., Lee, T., Seely, D.: A comparative review of thermography as a breast cancer screening technique. Integr. Cancer Ther. 8(1), 9–16 (2009)
Lawson, R.N., Chughtai, M.S.: Breast cancer and body temperature. Can. Med. Assoc. J. 88(2), 68 (1963)
Ma, J., et al.: A portable breast cancer detection system based on smartphone with infrared camera. Vibroeng. PROCEDIA 26, 57–63 (2019)
Meraghni, S., Terrissa, L.S., Yue, M., Ma, J., Jemei, S., Zerhouni, N.: A data-driven digital-twin prognostics method for proton exchange membrane fuel cell remaining useful life prediction. Int. J. Hydrogen Energy 46, 2555–2564 (2020)
Miller, K.D., Fidler-Benaoudia, M., Keegan, T.H., Hipp, H.S., Jemal, A., Siegel, R.L.: Cancer statistics for adolescents and young adults, 2020. CA: A Can. J. Clin. 70(6), 443–459 (2020)
Pennes, H.H.: Analysis of tissue and arterial blood temperatures in the resting human forearm. J. Appl. Physiol. 1(2), 93–122 (1948)
Tepper, M., Gannot, I.: Monitoring tumor state from thermal images in animal and human models. Med. Phys. 42(3), 1297–1306 (2015)
Tepper, M., et al.: Thermographic investigation of tumor size, and its correlation to tumor relative temperature, in mice with transplantable solid breast carcinoma. J. Biomed. Opt. 18(11), 111410 (2013). https://doi.org/10.1117/1.JBO.18.11.111410
Tuegel, E.J., Ingraffea, A.R., Eason, T.G., Spottswood, S.M.: Reengineering aircraft structural life prediction using a digital twin. Int. J. Aerosp. Eng. 2011, 154798 (2011)
Wahab, A.A., Salim, M.I.M., Ahamat, M.A., Manaf, N.A., Yunus, J., Lai, K.W.: Thermal distribution analysis of three-dimensional tumor-embedded breast models with different breast density compositions. Med. Biol. Eng. Comput. 54(9), 1363–1373 (2016)
Zhou, Y., Herman, C.: Optimization of skin cooling by computational modeling for early thermographic detection of breast cancer. Int. J. Heat Mass Transf. 126, 864–876 (2018)
Zuluaga-Gomez, J., Al Masry, Z., Benaggoune, K., Meraghni, S., Zerhouni, N.: A CNN-based methodology for breast cancer diagnosis using thermal images. Comput Methods Biomech. Biomed. Eng. Imag. Vis. 9(2), 1–15 (2020)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Meraghni, S., Benaggoune, K., Al Masry, Z., Terrissa, L.S., Devalland, C., Zerhouni, N. (2021). Towards Digital Twins Driven Breast Cancer Detection. In: Arai, K. (eds) Intelligent Computing. Lecture Notes in Networks and Systems, vol 285. Springer, Cham. https://doi.org/10.1007/978-3-030-80129-8_7
Download citation
DOI: https://doi.org/10.1007/978-3-030-80129-8_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-80128-1
Online ISBN: 978-3-030-80129-8
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)