Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Novel Model for Enhancing Fact-Checking

  • Conference paper
  • First Online:
Intelligent Computing

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 284))

  • 2269 Accesses

Abstract

Fact-checking is a task to capture the relation between a claim and evidence (premise) to decide this claim’s truth. Detecting the factuality of claim, as in fake news, depending only on news knowledge, e.g., evidence text, is generally inadequate since fake news is intentionally written to mislead readers. Most of the previous models on this task rely on claim and evidence argument as input for their model, where sometimes the systems fail to detect the relation, particularly for ambiguate information. This study aims to improve fact-checking task by incorporating warrant as a bridge between the claim and the evidence, illustrating why this evidence supports this claim, i.e., If the warrant links between the claim and the evidence then the relation is supporting, if not it is either irrelevant or attacking, so warrants are applicable only for supporting the claim. To solve the problem of gap semantic between claim evidence pair, A model that can detect the relation based on existing extracted warrants from structured data is developed. For warrant selection, knowledge-based prediction and style-based prediction models are merged to capture more helpful information to infer which warrant represents the best bridges between claim and evidence. Picking a reasonable warrant can help alleviate the evidence ambiguity problem if the proper relation cannot be detected. Experimental results show that incorporating the best warrant to fact-checking model improves the performance of fact-checking.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/UKPLab/ argumentreasoning-comprehension-task/.

References

  1. Peldszus, A., Stede, M.: Joint prediction in MST-style discourse parsing for argumentation mining. In: Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, no. September, pp. 938–948 (2015). https://doi.org/10.18653/v1/d15-1110

  2. Cocarascu, O., Toni, F.: Identifying attack and support argumentative relations using deep learning. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, vol. September 7, pp. 1374–1379 (2017). https://doi.org/10.18653/v1/d17-1144

  3. Lippi, M., Torroni, P.: Context-independent claim detection for argument mining. In: Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligent (IJCAI 2015), vol. January, pp. 185–191 (2015)

    Google Scholar 

  4. Bowman, S.R., Angeli, G., Potts, C., Manning, C.D.: A large annotated corpus for learning natural language inference. In: Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 632–642 (2015). https://doi.org/10.18653/v1/d15-1075

  5. Stab, C., Gurevych, I.: Identifying argumentative discourse structures in persuasive essays. In: 2014 Conference on Empirical Methods in Natural Language Processing, Proceedings of the Conference, EMNLP 2014, no. October, pp. 46–56 (2014). https://doi.org/10.3115/v1/d14-1006

  6. Magdy, A., Wanas, N.: Web-based statistical fact checking of textual documents. In: Proceedings of the 2nd International Workshop on Search and Mining User-Generated Contents, no. October, pp. 103–109 (2010). https://doi.org/10.1145/1871985.1872002

  7. Wu, Y., Agarwal, P.K., Li, C., Yang, J., Yu, C.: Toward computational fact-checking. Proc. VLDB Endow. 7(7), 589–600 (2014). https://doi.org/10.14778/2732286.2732295

    Article  Google Scholar 

  8. de Oliveira, V., Gabriel, A., Panisson, R., Bordini, D., Adamatti, C., Billa, C.Z.: Reasoning in BDI agents using Toulmin’s argumentation model. Theor. Comput. Sci. 805, 76–91 (2020). https://doi.org/10.1016/j.tcs.2019.10.026

    Article  MathSciNet  MATH  Google Scholar 

  9. Habernal, I., Wachsmuth, H., Gurevych, I., Stein, B.: SemEval-2018 task 12: the argument reasoning comprehension task. In: Proceedings of the 12th International Workshop on Semantic Evaluation (SemEval-2018), vol. June, pp. 763–772 (2018). https://doi.org/10.18653/v1/s18-1121

  10. Singh, K., Reisert, P., Inoue, N., Kavumba, P., Inui, K.: Improving evidence detection by leveraging warrants. In: Proceedings of the Second Workshop on Fact Extraction and VERification (FEVER), no. November, pp. 57–62 (2019). https://doi.org/10.18653/v1/d19-6610

  11. Freeman, J.: Argument strength, the toulmin model, and ampliative probability. In: van Eemeren, F.H., Garssen, B. (eds.) Pondering on Problems of Argumentation, pp. 191–205. Springer, Dordrecht (2009). https://doi.org/10.1007/978-1-4020-9165-0_14

    Chapter  Google Scholar 

  12. Toulmin, S.E.: The Uses of Argument. Cambridge University Press, Cambridge (1958)

    Google Scholar 

  13. Singh, K., Simpson, E., Reisert, P., Gurevych, I., Inui, K.: Ranking warrants with pairwise preference learning. In: Proceedings of the 26th Annual Meeting of the Natural Language Processing Society (March 2020), no. C, pp. 776–779 (2020). https://www.anlp.jp/proceedings/annual_meeting/2020/pdf_dir/P3-34.pdf

  14. Mueller, J., Gifford, D., Jaakkola, T.: Sequence to better sequence: continuous revision of combinatorial structures. In: Proceedings of the 34th International Conference on Machine Learning, ICML, vol. 5, no. 1, pp. 3900–3916 (2017)

    Google Scholar 

  15. Hu, Z., Yang, Z., Liang, X., Salakhutdinov, R., Xing, E.P.: Toward controlled generation of text. In: 34th International Conference on Machine Learning, ICML 2017, vol. 4, no. PMLR 70, pp. 2503–2513 (2017)

    Google Scholar 

  16. Knyaz, V.A., Kniaz, V.V., Remondino, F.: Image-to-voxel model translation with conditional adversarial networks. In: Leal-Taixé, L., Roth, S. (eds.) ECCV 2018. LNCS, vol. 11129, pp. 601–618. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11009-3_37

    Chapter  Google Scholar 

  17. Engin, D., Genç, A., Ekenel, H.K.: Cycle-Dehaze: enhanced CycleGAN for single image dehazing. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, pp. 938–946 (2018). https://doi.org/10.1109/CVPRW.2018.00127

  18. Zhang, S., Tan, H., Chen, L., Lv, B.: Enhanced text matching based on semantic transformation. IEEE Access 8(February), 30897–30904 (2020). https://doi.org/10.1109/ACCESS.2020.2973206

    Article  Google Scholar 

  19. Karadzhov, G., Gencheva, P., Nakov, P., Koychev, I.: We built a fake news & click-bait filter: what happened next will blow your mind!. In: Proceedings of Recent Advances in Natural Language Processing, vol. September, pp. 334–343 (2017). https://doi.org/10.26615/978-954-452-049-6_045

  20. Karadzhov, G., Nakov, P., Màrquez, L., Barrón-Cedeño, A., Koychev, I.: Fully automated fact checking using external sources. In: International Conference on Recent Advances in Natural Language Processing, RANLP, vol. 2017-Septe, pp. 344–353 (2017). https://doi.org/10.26615/978-954-452-049-6-046

  21. Ma, J., Gao, W., Wong, K.: Rumor detection on twitter with tree-structured recursive neural networks. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Long Papers), pp. 1980–1989 (2018). https://doi.org/10.18653/v1/P18-1184

  22. Ruchansky, N., Seo, S., Liu, Y.: CSI: a hybrid deep model for fake news detection. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, vol. Part F1318, no. November, pp. 797–806 (2017). https://doi.org/10.1145/3132847.3132877

  23. Zhang, J., Dong, B., Yu, P.S.: FAKEDETECTOR: effective fake news detection with deep diffusive neural network. In: Proceedings of the International Conference on Data Engineering, vol. April, pp. 1826–1829 (2020). https://doi.org/10.1109/ICDE48307.2020.00180

  24. Ma, J., et al.: Detecting rumors from microblogs with recurrent neural networks. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence (IJCAI 2016), pp. 3818–3824 (2016). https://ink.library.smu.edu.sg/sis_research/4630

  25. Yang, Y., et al.: TI-CNN: convolutional neural networks for fake news detection. CoRR, vol. abs/1806.0 (2018). http://dblp.uni-trier.de/db/journals/corr/corr1806.html#abs-1806-00749

  26. Liu, Y., Wu, Y.F.B.: Early detection of fake news on social media through propagation path classification with recurrent and convolutional networks. In: 32nd AAAI Conference on Artificial Intelligence, AAAI 2018, pp. 354–361 (2018). http://dblp.uni-trier.de/db/conf/aaai/aaai2018.html#LiuW18

  27. Wang, Y., et al.: EANN: event adversarial neural networks for multi-modal fake news detection. In: Proceedings of The 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, vol. Article 4, pp. 849–857 (2018). https://doi.org/10.1145/3219819.3219903

  28. Nguyen, H.V., Litman, D.J.: Context-aware argumentative relation mining. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, ACL, vol. 1: Long Paper, no. August, pp. 1127–1137 (2016). https://doi.org/10.18653/v1/p16-1107

  29. Kuribayashi, T., Reisert, P., Inoue, N., Inui, K.: Towards exploiting argumentative context for argumentative relation identification. In: Proceedings of the 24th Annual Conference of the Society of Language Processing, March 2018, no. C, pp. 284–287 (2018). http://anlp.jp/proceedings/annual_meeting/2018/pdf_dir/A2-4.pdf. https://www.google.com/search?q=test+&ie=utf-8&oe=utf-8&client=firefox-b-ab

  30. Rinott, R., Dankin, L., Alzate, C., Khapra, M.M., Aharoni, E., Slonim, N.: Show me your evidence – an automatic method for context dependent evidence detection. In: Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, no. September, pp. 440–450 (2015). https://doi.org/10.18653/v1/d15-1050

  31. Boltuzic, F., Šnajder, J.: Fill the gap! Analyzing implicit premises between claims from online debates. In: Proceedings of the 3rd Workshop on Argument Mining, no. August, pp. 124–133 (2016). https://doi.org/10.18653/v1/w16-2815

  32. Habernal, I., Wachsmuth, H., Gurevych, I., Stein, B.: The argument reasoning comprehension task: identification and reconstruction of implicitwarrants. In: 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies - Proceedings of the Conference, NAACL HLT 2018, vol. 1, pp. 1930–1940 (2018). https://doi.org/10.18653/v1/n18-1175

  33. Rubin, V.L., Lukoianova, T.: Truth and deception at the rhetorical structure level. J. Assoc. Inf. Sci. Technol. 66(5), 905–917 (2015). https://doi.org/10.1002/asi.23216

    Article  Google Scholar 

  34. Potthast, M., Kiesel, J., Reinartz, K., Bevendorff, J., Stein, B.: A stylometric inquiry into hyperpartisan and fake news. In: 56th Annual Meeting of the Association for Computational Linguistics Proceedings Conference, Long Paper, ACL 2018, vol. 1, pp. 231–240 (2018). https://doi.org/10.18653/v1/p18-1022

  35. Shen, T., Lei, T., Barzilay, R., Jaakkola, T.: Style transfer from non-parallel text by cross-alignment. In: Advances in Neural Information Processing Systems 30 (NIPS 2017), vol. 30, no. Nips, pp. 6830–6841 (2017)

    Google Scholar 

  36. Hinton, G., Sabour, S., Frosst, N.: Matrix capsules with EM routing. In: International Conference on Learning Representations, ICLR, pp. 1–15 (2018). https://doi.org/10.2514/1.562

  37. Sabour, S., Frosst, N., Hinton, G.E.: Dynamic routing between capsules. In: 31st Conference on Neural Information Processing Systems (NIPS 2017) Advances in Neural Information Processing Systems, vol. December, no. NIPS, pp. 3857–3867 (2017)

    Google Scholar 

  38. Jain, D.K., Jain, R., Upadhyay, Y., Kathuria, A., Lan, X.: Deep refinement: capsule network with attention mechanism-based system for text classification. Neural Comput. Appl. 32(7), 1839–1856 (2019). https://doi.org/10.1007/s00521-019-04620-z

    Article  Google Scholar 

  39. Li, S., Li, M., Xu, Y., Bao, Z., Fu, L., Zhu, Y.: Capsules based Chinese word segmentation for ancient Chinese medical books. IEEE Access 6, 70874–70883 (2018). https://doi.org/10.1109/ACCESS.2018.2881280

    Article  Google Scholar 

  40. Wu, Y., Li, J., Wu, J., Chang, J.: Siamese capsule networks with global and local features for text classification. Neurocomputing 390, 88–98 (2020). https://doi.org/10.1016/j.neucom.2020.01.064

    Article  Google Scholar 

  41. Du, Y., Zhao, X., He, M., Guo, W.: A novel capsule based hybrid neural network for sentiment classification. IEEE Access 7, 39321–39328 (2019). https://doi.org/10.1109/ACCESS.2019.2906398

    Article  Google Scholar 

  42. Kim, J., Jang, S., Park, E., Choi, S.: Text classification using capsules. Neurocomputing, 376(2), 214–221 (2020). https://doi.org/10.1016/j.neucom.2019.10.033

  43. Yin, H., Liu, P., Zhu, Z., Li, W., Wang, Q.: Capsule network with identifying transferable knowledge for cross-domain sentiment classification. IEEE Access 7, 153171–153182 (2019). https://doi.org/10.1109/ACCESS.2019.2948628

    Article  Google Scholar 

  44. Yang, M., Zhao, W., Chen, L., Qu, Q., Zhao, Z., Shen, Y.: Investigating the transferring capability of capsule networks for text classification. Neural Netw. 118, 247–261 (2019). https://doi.org/10.1016/j.neunet.2019.06.014

    Article  Google Scholar 

  45. Kumar, A., Narapareddy, V.T., Srikanth, V.A., Malapati, A., Neti, L.B.M.: Sarcasm detection using multi-head attention based bidirectional LSTM. IEEE Access 8, 6388–6397 (2020). https://doi.org/10.1109/ACCESS.2019.2963630

    Article  Google Scholar 

  46. Vlad, G.-A., Tanase, M.-A., Onose, C., Cercel, D.-C.: Sentence-level propaganda detection in news articles with transfer learning and BERT-BiLSTM-capsule model. In: Proceedings of the 2nd Workshop on NLP for Internet Freedom: Censorship, Disinformation, and Propaganda, no. November, pp. 148–154 (2019). https://doi.org/10.18653/v1/d19-5022

  47. Gao, S., Ramanathan, A., Tourassi, G.: Hierarchical convolutional attention networks for text classification. In: Proceedings of the 3rd Workshop on Representation Learning for NLP, no. 2014, pp. 11–23 (2018). https://doi.org/10.18653/v1/w18-3002

  48. Pennebaker, J.W., Booth, R.J., Boyd, R.L., Francis, M.E.: Linguistic inquiry and word count (LIWC). Mahw. Lawrence Erlbaum Assoc. 71, 1–24 (2001). https://doi.org/10.4018/978-1-60960-741-8.ch012

    Article  Google Scholar 

  49. Guu, K., Miller, J., Liang, P.: Traversing knowledge graphs in vector space. In: Proceedings of 2015 Conference on Empirical Methods in Natural Language Processing, EMNLP, pp. 318–327 (2015). https://doi.org/10.18653/v1/d15-1038

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatima T. AlKhawaldeh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

AlKhawaldeh, F.T., Yuan, T., Kazakov, D. (2021). A Novel Model for Enhancing Fact-Checking. In: Arai, K. (eds) Intelligent Computing. Lecture Notes in Networks and Systems, vol 284. Springer, Cham. https://doi.org/10.1007/978-3-030-80126-7_47

Download citation

Publish with us

Policies and ethics