Nothing Special   »   [go: up one dir, main page]

Skip to main content

Enhanced Reinforcement Learning Model for Extraction of Objects in Complex Imaging

  • Conference paper
  • First Online:
Intelligent Computing

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 283))

Abstract

Object segmentation is the process of extracting and partitioning an image into digital information. In the field of computer vision and image processing, we perform several activities in the segmentation stage, such as image segmentation and dynamic context video segmentation. The semantic pixel wise image segmentation method is the investigation of several objects that are extracted for image processing and interpretation. In general, segmentation relates to the partitioning of an image into full or identical regions. The effects of image segmentation have an effect on the image processing process. In general, it includes the description and specification of objects; higher order tasks follow, such as entity classification and attribute estimation. The visualization and classification of the area of interest in any picture is therefore an important function in order to segment the image. We examine a variety of image segmentation algorithms and give our reinforcement learning algorithm that uses Deep Convolutional Neural Networks for the detection of irregular objects, which has been tested on four datasets. We then relate our approaches to the previous literature to illustrate that the segmentation results are superior to the findings in the previous literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Zhu, Q., Shao, L., Li, Q., Xie, Y.: Recursive kernel density estimation for modeling the background and segmenting moving objects. In: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 1769–1772 (2013)

    Google Scholar 

  2. Kaganami, H.G., Beiji, Z.: Region-based segmentation versus edge detection. In: Fifth International Conference on Intelligent Information Hiding and Multimedia Signal Processing, pp. 1217–1221 (2009)

    Google Scholar 

  3. Dubey, R.B., Hanmandlu, M., Gupta, S.K., Gupta, S.K.: The brain MR image segmentation techniques and use of diagnostic packages. Acad. Radiol. 17(5), 658–671 (2010). https://doi.org/10.1016/j.acra.2009.12.017

    Article  Google Scholar 

  4. Rastgarpour, M., Shanbehzadeh, J.: Application of ai techniques in medical image segmentation and novel categorization of available methods and in tools. In: Proceedings of the International MultiConference of Engineers and Computer Scientists (2011)

    Google Scholar 

  5. Gomez-Moreno, H., Maldonado, S., Gil-Jimenez, P., Lafuente, S.: Goal evaluation of segmentation algorithms for traffic sign recognition. IEEE Trans. Intell. Transp. Syst. 11(4), 917–930 (2010). https://doi.org/10.1109/TITS.2010.2054084

    Article  Google Scholar 

  6. Roth, K.A., Almeida, J.S.: Coming into focus: computational pathology as the new big data microscope. Am. J. Pathol. 185(3), 600 (2015)

    Article  Google Scholar 

  7. Kang, W.X., Yang, Q.Q., Liang, R.P.: The comparative research on image segmentation algorithms First International Workshop on Education Technology and Computer. First Int. Workshop Educ. Technol. Comput. Sci. 2, 703–707 (2009)

    Article  Google Scholar 

  8. Mitrović, D., Hartlieb, S., Zeppelzauer, M., Zaharieva, M.: Scene segmentation in artistic archive documentaries. In: Leitner, G., Hitz, M., Holzinger, A. (eds.) USAB. LNCS, vol. 6389, pp. 400–410. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16607-5_27

    Chapter  Google Scholar 

  9. Mcandrew, A.: An Introduction to Digital Image Processing with Matlab Notes for SCM2511 Image Processing 1 Semester 1,” Image Processing (2004)

    Google Scholar 

  10. Choong, M.Y., Kow, W.Y., Khong, W.L., Liau, C.F., Teo, K.T.K.: An image segmentation using normalised cuts in multistage approach. Image 5(6), 7 (2012)

    Google Scholar 

  11. Senthilnath, J., Omkar, S.N., Mani, V., Tejovanth, N., Diwakar, P.G., Shenoy, A.: Multi-spectral satellite image classification using glowworm swarm optimization. In: 2011 IEEE International Geoscience and Remote Sensing Symposium, pp. 47–50 (2011)

    Google Scholar 

  12. Liu, Y., Xiao, K., Liang, A., Guan, H.: Fuzzy c-means clustering with bilateral filtering for medical image segmentation. In: Corchado, E., Snášel, V., Abraham, A., Woźniak, M., Graña, M., Cho, S.-B. (eds.) HAIS. LNCS, vol. 7208, pp. 221–230. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28942-2_20

    Chapter  Google Scholar 

  13. Xiong, X., et al.: VIIRS on-orbit calibration methodology and performance. Journal of Geophysical Research: Atmospheres 119(9), 5065–5078 (2014). https://doi.org/10.1002/2013JD020423

    Article  Google Scholar 

  14. Yang, L., Zhang, Y., Wang, Z., Rao, N.: Image registration of rabbit tooth soft tissue based on B-Spline. In: 4th International Congress on Image and Signal Processing, vol. 2, pp. 1104–1107 (2011)

    Google Scholar 

  15. Nosrati, M.S., Andrews, S., Hamarneh, G.: Bounded labeling function for global segmentation of multi-part objects with geometric constraints. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2032–2039 (2013)

    Google Scholar 

  16. Dandin, O., Teomete, U., Osman, O., Tulum, G., Ergin, T., Sabuncuoglu, M.Z.: Automated segmentation of the injured spleen. Int. J. Comput. Assis. Radiol. Surg. 11(3), 351–368 (2015). https://doi.org/10.1007/s11548-015-1288-9

    Article  Google Scholar 

  17. Dogantekin, E., Yilmaz, M., Dogantekin, A., Avci, E., Sengur, A.: A robust technique based on invariant moments – ANFIS for recognition of human parasite eggs in microscopic images. Expert Syst. App. 35(3), 728–738 (2008). https://doi.org/10.1016/j.eswa.2007.07.020

    Article  Google Scholar 

  18. Lian, X., Wu, Y., Zhao, W., Wang, F., Zhang, Q., Li, M.: Unsupervised SAR image segmentation based on conditional triplet Markov fields. IEEE Geosci. Remote Sens. Lett. 11(7), 1185–1189 (2014)

    Article  Google Scholar 

  19. Shi, Z., Lihuang, S., Li, L., Hua, Z.: A modified fuzzy C-means for bias field estimation and segmentation of brain MR image. In: 25th Chinese Control and Decision Conference (CCDC), pp. 2080–2085 (2013)

    Google Scholar 

  20. Wan, Q., Rao, S.P., Kaszowska, A., Voronin, V., Panetta, K., Taylor, H.A., Agaian, S.: Face description using anisotropic gradient: thermal infrared to visible face recognition. Mob. Multimed. Image. Process. Secur. App. 10668, 106–680 (2018)

    Google Scholar 

  21. Haralick, R.M., Shapiro, L.G.: Image segmentation techniques. Comput. Vis. Graph. Image Process. 29(1), 100–132 (1985). https://doi.org/10.1016/S0734-189X(85)90153-7

    Article  Google Scholar 

  22. Karch, P., Zolotova, I.: An experimental comparison of modern methods of segmentation. In: 2010 IEEE 8th International Symposium on Applied Machine Intelligence and Informatics (SAMI), pp. 247–252 (2010)

    Google Scholar 

  23. Kettaf, F.Z., Bi, D., Beauville, J.A.D.: A comparison study of image segmentation by clustering techniques. In: Proceedings of Third International Conference on Signal Processing (ICSP 1996), vol. 2, pp. 1280–1283 (1996)

    Google Scholar 

  24. Zhang, Y.J.: A survey on evaluation methods for image segmentation. Pattern Recogn. 29(8), 1335–1346 (1996)

    Article  Google Scholar 

  25. Zhang, H., Cholleti, S., Goldman, S.A., Fritts, J.E.: Meta-evaluation of image segmentation using machine learning. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2006), vol. 1, pp. 1138–1145 (2006)

    Google Scholar 

  26. Sonawane, M.S., Dhawale, C.A.: A brief survey on image segmentation methods. Int. J. Comput. App. 975, 8887 (2015)

    Google Scholar 

  27. Jiang, X., Zhang, R., Nie, S.: Image segmentation based on PDEs model: a survey. In: 3rd International Conference on Bioinformatics and Biomedical Engineering, pp. 1–4 (2009)

    Google Scholar 

  28. Macqueen, J.: Some methods for classification and analysis of multi- variate observations. In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, pp. 281–297 (1967)

    Google Scholar 

  29. Matta, S.: Various image segmentation techniques. Int. J. Comput. Sci. Inf. Technol. (IJCSIT) 5(6), 7536–7539 (2014)

    Google Scholar 

  30. Choi, H.W., Qureshi, N.M.F., Shin, D.R.: Comparative analysis of electricity consumption at home through a silhouette-score prospective. In: 2019 21st International Conference on Advanced Communication Technology (ICACT), pp. 589–591 (2019)

    Google Scholar 

  31. Zhu, C., Ni, J., Li, Y., Gu, G.: General tendencies in segmentation of medical ultrasound images. In: 2009 Fourth International Conference on Internet Computing for Science and Engineering, pp. 113–117 (2009)

    Google Scholar 

  32. Kapse, R.S., Salankar, S.S., Babar, M.: Literature survey on detection of brain tumor from MRI images. IOSR. J. Electron. Commun. Eng. (IOSR-JECE) 10(1), 80–86 (2015)

    Google Scholar 

  33. Madabhushi, A., Metaxas, D.N.: Combining low-, high-level and empirical domain knowledge for automated segmentation of ultrasonic breast lesions. IEEE Trans. Med. Imaging 22(2), 155–169 (2003). https://doi.org/10.1109/TMI.2002.808364

    Article  Google Scholar 

  34. Hopfield, J.J.: Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. 79(8), 2554–2558 (1982). https://doi.org/10.1073/pnas.79.8.2554

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Usmani, U.A., Roy, A., Watada, J., Jaafar, J., Aziz, I.A. (2022). Enhanced Reinforcement Learning Model for Extraction of Objects in Complex Imaging. In: Arai, K. (eds) Intelligent Computing. Lecture Notes in Networks and Systems, vol 283. Springer, Cham. https://doi.org/10.1007/978-3-030-80119-9_63

Download citation

Publish with us

Policies and ethics