Abstract
The present work deals with implementing tourist recommendation systems designed to predict the user preferences about a place or tourist activity in Mexico. Three recommendation systems have been proposed: two based on collaborative filtering (user and items) and the other based on demographic issues. To this aim, a corpus has been built by collecting 2,263 ratings from TripAdvisor.com about eighteen tourist places in Mexico. Experimental results show that the demographic-based recommendation system outperforms those based on collaborative filtering, obtaining a mean absolute error of 0.67 and a mean square error of 1.2980. These results also show significant improvement over a majority class baseline based on a sizeable unbalanced corpus.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Adomavicius, G., Tuzhilin, A.: Context-aware recommender systems. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.) Recommender Systems Handbook, pp. 217–253. Springer, Boston, MA (2011). https://doi.org/10.1007/978-0-387-85820-3_7
Aguirre Quezada, J.P.: Caída del turismo por la covid-19. desafío para méxico y experiencias internacionales. In: Instituto Belisario Dominguez, 186, 1–13. Senado de la republica (2020)
Al-Ghobari, M., Muneer, A., Fati, S.M.: Location-aware personalized traveler recommender system (lapta) using collaborative filtering KNN. Comput. Mater. Continu. 68 (2021)
Binucci, C., De Luca, F., Di Giacomo, E., Liotta, G., Montecchiani, F.: Designing the content analyzer of a travel recommender system. Expert Syst. Appl. 87, 199–208 (2017)
Chai, T., Draxler, R.R.: Root mean square error (RMSE) or mean absolute error (MAE)? - arguments against avoiding RMSE in the literature. Geosci. Mod. Dev. 7(3), 1247–1250 (2014). https://doi.org/10.5194/gmd-7-1247-2014
EFE, A.: Estimas caida del 10% en el pib turistico de mexico (2020). https://www.efe.com/efe/america/mexico/estiman-caida-del-10-en-el-pib-tu-ristico-de-mexico/50000545-4233506
El economista (2019). https://www.eleconomista.com.mx/empresas/Sector-de-viajes-y-turismo-crecio-mas-que-el-PIB-20190301-0003.html
Fararni, K.A., Nafis, F., Aghoutane, B., Yahyaouy, A., Riffi, J., Sabri, A.: Hybrid recommender system for tourism based on big data and AI: a conceptual framework. Big Data Min. Anal. 4(1), 47–55 (2021). https://doi.org/10.26599/BDMA.2020.9020015
Ghazanfar, M.A., Prugel-Bennett, A.: A scalable, accurate hybrid recommender system. In: 2010 Third International Conference on Knowledge Discovery and Data Mining, pp. 94–98. IEEE (2010)
Hamid, R.A., et al.: How smart is e-tourism? a systematic review of smart tourism recommendation system applying data management. Comput. Sci. Rev. 39, 100337 (2021). https://doi.org/10.1016/j.cosrev.2020.100337
Hedlund, J., Nilsson Tengstrand, E.: A comparison between different recommender system approaches for a book and an author recommender system (2020)
Herlocker, J.L., Konstan, J.A., Terveen, L.G., Riedl, J.T.: Evaluating collaborative filtering recommender systems. ACM Trans. Inf. Syst. 22(1), 5–53 (2004). https://doi.org/10.1145/963770.963772
INEGI: Estadísticas a propósito del día mundial del turismo (2019). https://www.inegi.org.mx/contenidos/saladeprensa/aproposito/2019/turismo2019_Nal.pdf
Kuanr, M., Mohanty, S.N.: Location-based personalised recommendation systems for the tourists in India. Int. J. Bus. Intell. Data Min. 17(3), 377–392 (2020)
Likert, R.: A technique for the measurement of attitudes. Arch. Psychol. 140, 55 (1932)
Ranjith, S., Paul, P.V.: A survey on recent recommendation systems for the tourism industry. In: Accelerating Knowledge Sharing, Creativity, and Innovation Through Business Tourism, pp. 205–237. IGI Global (2020)
Salunke, S.S.: Selenium Webdriver in Python: Learn with Examples, vol. 70. CreateSpace Independent Publishing Platform, USA (2014)
SECTUR: Ranking mundial de turismo internacional (2018). https://www.datatur.sectur.gob.mx/SitePages/RankingOMT.aspx
Shani, G., Gunawardana, A.: Evaluating Recommendation Systems, pp. 257–297. Springer, US, Boston, MA (2011). https://doi.org/10.1007/978-0-387-85820-3_8
Shen, J., Deng, C., Gao, X.: Attraction recommendation: towards personalized tourism via collective intelligence. Neurocomputing 173, 789–798 (2016)
UNWTO: Unwto world tourism barometer and statistical annex, UNWTO World Tourism Barometer 18(1), 1–48 (2020)
Vu, H.Q., Li, G., Law, R., Zhang, Y.: Exploring tourist dining preferences based on restaurant reviews. J. Travel Res. 58(1), 149–167 (2019)
Welle, D.: El impacto al turismo arrastrará a la economía mexicana. (2020). https://www.dw.com/es/el-impacto-al-turismo-arrastra-a-la-econom%C3%ADa-mexicana/a-53137428
Xiong, H., Zhou, Y., Hu, C., Wei, X., Li, L.: A novel recommendation algorithm frame for tourist spots based on multi-clustering bipartite graphs. In: 2017 IEEE 2nd International Conference on Cloud Computing and Big Data Analysis (ICCCBDA), pp. 276–282. IEEE (2017)
Yochum, P., Chang, L., Gu, T., Zhu, M.: Linked open data in location-based recommendation system on tourism domain: a survey. IEEE Access 8, 16409–16439 (2020). https://doi.org/10.1109/ACCESS.2020.2967120
Acknowledgements
This work was partially supported by the Tecnológico Nacional de México (Grants No. 8288.20-P and 9518.20-P).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Arce-Cardenas, S., Fajardo-Delgado, D., Álvarez-Carmona, M.Á., Ramírez-Silva, J.P. (2021). A Tourist Recommendation System: A Study Case in Mexico. In: Batyrshin, I., Gelbukh, A., Sidorov, G. (eds) Advances in Soft Computing. MICAI 2021. Lecture Notes in Computer Science(), vol 13068. Springer, Cham. https://doi.org/10.1007/978-3-030-89820-5_15
Download citation
DOI: https://doi.org/10.1007/978-3-030-89820-5_15
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-89819-9
Online ISBN: 978-3-030-89820-5
eBook Packages: Computer ScienceComputer Science (R0)