Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Tourist Recommendation System: A Study Case in Mexico

  • Conference paper
  • First Online:
Advances in Soft Computing (MICAI 2021)

Abstract

The present work deals with implementing tourist recommendation systems designed to predict the user preferences about a place or tourist activity in Mexico. Three recommendation systems have been proposed: two based on collaborative filtering (user and items) and the other based on demographic issues. To this aim, a corpus has been built by collecting 2,263 ratings from TripAdvisor.com about eighteen tourist places in Mexico. Experimental results show that the demographic-based recommendation system outperforms those based on collaborative filtering, obtaining a mean absolute error of 0.67 and a mean square error of 1.2980. These results also show significant improvement over a majority class baseline based on a sizeable unbalanced corpus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://sites.google.com/cicese.edu.mx/rest-mex-2021/corpus-request.

  2. 2.

    https://surprise.readthedocs.io/en/stable.

  3. 3.

    https://colab.research.google.com.

References

  1. Adomavicius, G., Tuzhilin, A.: Context-aware recommender systems. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.) Recommender Systems Handbook, pp. 217–253. Springer, Boston, MA (2011). https://doi.org/10.1007/978-0-387-85820-3_7

    Chapter  Google Scholar 

  2. Aguirre Quezada, J.P.: Caída del turismo por la covid-19. desafío para méxico y experiencias internacionales. In: Instituto Belisario Dominguez, 186, 1–13. Senado de la republica (2020)

    Google Scholar 

  3. Al-Ghobari, M., Muneer, A., Fati, S.M.: Location-aware personalized traveler recommender system (lapta) using collaborative filtering KNN. Comput. Mater. Continu. 68 (2021)

    Google Scholar 

  4. Binucci, C., De Luca, F., Di Giacomo, E., Liotta, G., Montecchiani, F.: Designing the content analyzer of a travel recommender system. Expert Syst. Appl. 87, 199–208 (2017)

    Article  Google Scholar 

  5. Chai, T., Draxler, R.R.: Root mean square error (RMSE) or mean absolute error (MAE)? - arguments against avoiding RMSE in the literature. Geosci. Mod. Dev. 7(3), 1247–1250 (2014). https://doi.org/10.5194/gmd-7-1247-2014

    Article  Google Scholar 

  6. EFE, A.: Estimas caida del 10% en el pib turistico de mexico (2020). https://www.efe.com/efe/america/mexico/estiman-caida-del-10-en-el-pib-tu-ristico-de-mexico/50000545-4233506

  7. El economista (2019). https://www.eleconomista.com.mx/empresas/Sector-de-viajes-y-turismo-crecio-mas-que-el-PIB-20190301-0003.html

  8. Fararni, K.A., Nafis, F., Aghoutane, B., Yahyaouy, A., Riffi, J., Sabri, A.: Hybrid recommender system for tourism based on big data and AI: a conceptual framework. Big Data Min. Anal. 4(1), 47–55 (2021). https://doi.org/10.26599/BDMA.2020.9020015

  9. Ghazanfar, M.A., Prugel-Bennett, A.: A scalable, accurate hybrid recommender system. In: 2010 Third International Conference on Knowledge Discovery and Data Mining, pp. 94–98. IEEE (2010)

    Google Scholar 

  10. Hamid, R.A., et al.: How smart is e-tourism? a systematic review of smart tourism recommendation system applying data management. Comput. Sci. Rev. 39, 100337 (2021). https://doi.org/10.1016/j.cosrev.2020.100337

  11. Hedlund, J., Nilsson Tengstrand, E.: A comparison between different recommender system approaches for a book and an author recommender system (2020)

    Google Scholar 

  12. Herlocker, J.L., Konstan, J.A., Terveen, L.G., Riedl, J.T.: Evaluating collaborative filtering recommender systems. ACM Trans. Inf. Syst. 22(1), 5–53 (2004). https://doi.org/10.1145/963770.963772

    Article  Google Scholar 

  13. INEGI: Estadísticas a propósito del día mundial del turismo (2019). https://www.inegi.org.mx/contenidos/saladeprensa/aproposito/2019/turismo2019_Nal.pdf

  14. Kuanr, M., Mohanty, S.N.: Location-based personalised recommendation systems for the tourists in India. Int. J. Bus. Intell. Data Min. 17(3), 377–392 (2020)

    Google Scholar 

  15. Likert, R.: A technique for the measurement of attitudes. Arch. Psychol. 140, 55 (1932)

    Google Scholar 

  16. Ranjith, S., Paul, P.V.: A survey on recent recommendation systems for the tourism industry. In: Accelerating Knowledge Sharing, Creativity, and Innovation Through Business Tourism, pp. 205–237. IGI Global (2020)

    Google Scholar 

  17. Salunke, S.S.: Selenium Webdriver in Python: Learn with Examples, vol. 70. CreateSpace Independent Publishing Platform, USA (2014)

    Google Scholar 

  18. SECTUR: Ranking mundial de turismo internacional (2018). https://www.datatur.sectur.gob.mx/SitePages/RankingOMT.aspx

  19. Shani, G., Gunawardana, A.: Evaluating Recommendation Systems, pp. 257–297. Springer, US, Boston, MA (2011). https://doi.org/10.1007/978-0-387-85820-3_8

  20. Shen, J., Deng, C., Gao, X.: Attraction recommendation: towards personalized tourism via collective intelligence. Neurocomputing 173, 789–798 (2016)

    Article  Google Scholar 

  21. UNWTO: Unwto world tourism barometer and statistical annex, UNWTO World Tourism Barometer 18(1), 1–48 (2020)

    Google Scholar 

  22. Vu, H.Q., Li, G., Law, R., Zhang, Y.: Exploring tourist dining preferences based on restaurant reviews. J. Travel Res. 58(1), 149–167 (2019)

    Article  Google Scholar 

  23. Welle, D.: El impacto al turismo arrastrará a la economía mexicana. (2020). https://www.dw.com/es/el-impacto-al-turismo-arrastra-a-la-econom%C3%ADa-mexicana/a-53137428

  24. Xiong, H., Zhou, Y., Hu, C., Wei, X., Li, L.: A novel recommendation algorithm frame for tourist spots based on multi-clustering bipartite graphs. In: 2017 IEEE 2nd International Conference on Cloud Computing and Big Data Analysis (ICCCBDA), pp. 276–282. IEEE (2017)

    Google Scholar 

  25. Yochum, P., Chang, L., Gu, T., Zhu, M.: Linked open data in location-based recommendation system on tourism domain: a survey. IEEE Access 8, 16409–16439 (2020). https://doi.org/10.1109/ACCESS.2020.2967120

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Tecnológico Nacional de México (Grants No. 8288.20-P and 9518.20-P).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Á. Álvarez-Carmona .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Arce-Cardenas, S., Fajardo-Delgado, D., Álvarez-Carmona, M.Á., Ramírez-Silva, J.P. (2021). A Tourist Recommendation System: A Study Case in Mexico. In: Batyrshin, I., Gelbukh, A., Sidorov, G. (eds) Advances in Soft Computing. MICAI 2021. Lecture Notes in Computer Science(), vol 13068. Springer, Cham. https://doi.org/10.1007/978-3-030-89820-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-89820-5_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-89819-9

  • Online ISBN: 978-3-030-89820-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics